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MOTIVATION

There is a daily physical relationship
between snowmelt/ET pulses, and the
groundwater and streamflow response
following solar radiation inputs.

During summer months, daily solar fluxes cycles are
tightly correlated with changes in sap flow (ET)

During this period, stream stages and riparian
groundwater levels decline during the day and
rebound at night

This cycles are typically reversed
during the snowmelt period ...
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MOTIVATION

In contrast to point-scale
observations (e.g., snow pillow),
diel cycles integrate a watershed-
scale response that include several
physical processes:

Can we use this
integrated signal to
better understand these

e Showmelt environments?

 Snowpack storage-release
e Subsurface storage-release,
 ET/sublimation,

* Surface storage and routing, etc.

i Sagehen Creek, Sierra Nevada, CA
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Using these relationships to diagnose whether snowmelt has
occurred (or rather, whether its signal has made it to the gauge)

In the mountanious western US, there is a
strong diurnal component in streamflow
(Lundquist and Cayan, 2002)

- ]
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FI1G. 1. June 2000 stations with clear diurnal cycles.

Kirchner et al (2020): The “diel cycle index”
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This type of analyses can be used to characterize the occurrence of

snowmelt but not necessarily the magnitude or rate of snowmelt.




Diel streamflow ana IySIS We analyze lagged-correlations of hourly

6 _ Sagehen Creek Near Truckee, CA. 000 solar radiation and streamflow.
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Then, we develop a snowmelt timing metric that
aims to capture the timing of the beginning of
the snowmelt season.

We call it DOS,, (Date of Snowmelt). And is
calculated as the 20" percentile of the
snowmelt days.

(We also tested other percentiles and definitions ... see
HESSD Sl)

* % % % %k

*ﬁ* Universidad

T

1 1 J)deConcepcion

S’ CAMPUS CHILLAN

)
\

We apply this method to every day on
records between December 1st and August
1%t for 31 watersheds in western US (small

and high).
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Research Questions

1.Does the diel streamflow analysis show evidence of earlier and
more intermittent snhowmelt in warmer watersheds and years
(as shown by point-scale observations and models)

2.Can we use the timing of snowmelt to predict the timing of
streamflow volume and make predictions under climate change?

3.How do these projections compare against commonly-used land
surface models?



Mean annual values for DOS,, show a cross-site
relationship with mean winter air temperature (Type)

(more disperse at warmer watersheds)

Mean Annual DOS20

Mean Winter Air Temperature (°C)
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Interannual variability at each

watershed show a less consistent
picture (variable number of years
with data across sites; [4-31] yrs).

Most watersheds with negative
slopes, but only a few of them are
statistically significant (red
overlapping lines).



We correlate the DOS,, with the date of 25% and 50% of the
annual streamflow volume (DOQ,; and DOQy,), suggesting that

DOS,, can predict the timing of streamflow volume.

Mean Annual DOS20
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Stepwise multiples linear regression (MLR) to predict DOS,, as a function
of climate (x;): air temperature, RH, solar radiation and precipitation.

MLR anual DOS,,
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Bi: Regression coefficients
x;: Climate data

We call this a
Space-for-Time
(STS) relationship,
which we use under
a climate change
scenario to predict
changes in DOS,,.



Climate change as simulated by the Weather Research and
Forecasting model (WRF, 4-km) under a pseudo-global warming by
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the end of the century (Li et al., 2017) at each watershed.
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Climate projections by the end
of the 21st century:

e Warmer:+4-5.2°C

 More humid (+1-1.7 g/m3)
and wetter (+ 2 — 20%)

e Slightly less solar radiation
([-1-7] W/m?)

Simulations have been previously
validated for the snowpack (NoahMP)
and meteorological components.



Mean annual DOS20
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What about changes to early (25%) streamflow
volume timing (DOQ,:)?

= 1:1 line . . .
- = 5 ‘ Historical period: NoahMP-WRF
] Wi “ underestimates the timing of
s 2| n. @ 4 DOQ,:, producing earlier
DOQ,s as g = streamflow, particularly at colder
£ o O O p y
simulated by WRF g = W Ry sites
(with NoahMP) zg = 8 ® ... '
S % a LI 1
2 B @, ' &% LIk Future period: NoahMP-WRF
o O .. L p
§ @ @ ‘ projects consistently earlier
L 1 ® @ (A). DOQ,: than the Space-for-Time
8 Jan-01 Feb-20 Apr-10 May-30 (STS) approach.
DOQ25 STS

DOQ, as simulated using the Space-for-Time
(STS) approach with the linear regression
between DOS,, and DOS,..



ADOQ25 NoahMP-WRF (days)

Proyected changes according to each method:
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Large differences between methods
reveal challenges in predicting changes
to streamflow volume timing under
climate change.

On average, empirically-driven (STS)
mean annual changes are 4 times more
sensitive than those from the land-
surface model.

Little difference in sensitivity is
projected by NoahMP-WRF across sites
with a mean change of about 15 days.



Space-for-Time
(based on the diel analysis)

Pro’s:

* Does not require assumptions embedded in
physically-based models.

* Well constrained by observed data representing
large hydrological gradients across time and
space.

Con’s:

* [t assumes that those variables not included
(e.g., soil and vegetation characteristics) vary
with climate.

 Cannot represent the physical processes
controlling streamflow generations.

* % % K %k

Which one should we trust the most? 32‘&’8[,%33%6“
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Land-Surface Model
(based on NoahMP-WRF)

Pro’s:
*  Tracks the covariance between meteorology to
estimate precipitation phase (critical driver).

 Represents hourly radiative, turbulent exchanges,
and cold content required to predict snowmelt.

Con’s:

* There are many assumptions behind processes
representation (e.g., subsurface and snowpack
storage and flow, vegetation, etc.).

* Spatial resolution becomes an issue for steep
headwater catchments (computationally
expensivel!).
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CONCLUSIONS

* By no means the STS method based on the diel streamflow analysis is a
replacement for land-Surface simulations.

 However, it is a relatively “cheap” method that only requires hourly solar
radiation and streamflow, and thus, potentially transferable.

* Limitations! -> ROS, large watersheds and storage, cross section shape ...

* Can be use complementary as an independent tool to benchmark and test
hydrological models beyond typical daily streamflow and SWE observations.

* Need to reduce uncertainties in streamflow projections for water
managements applications ...



