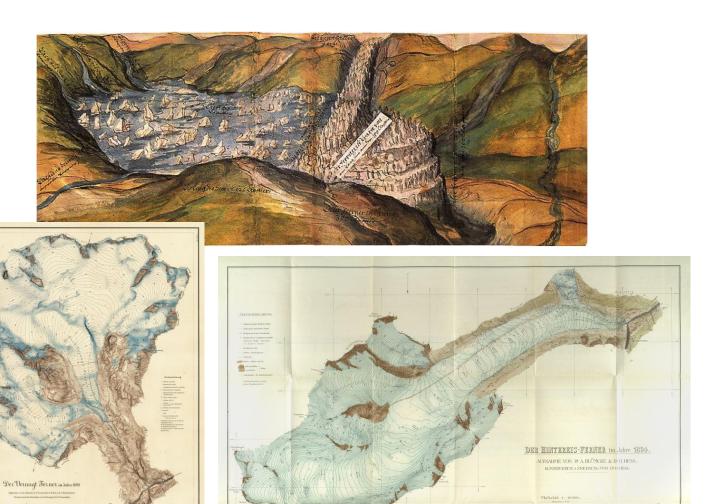
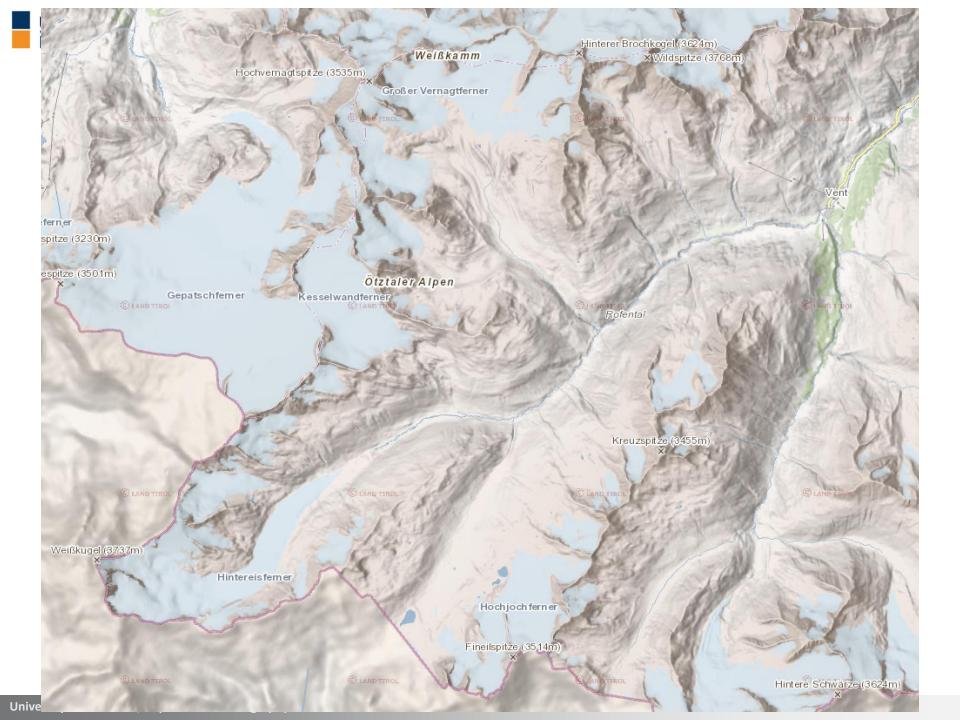
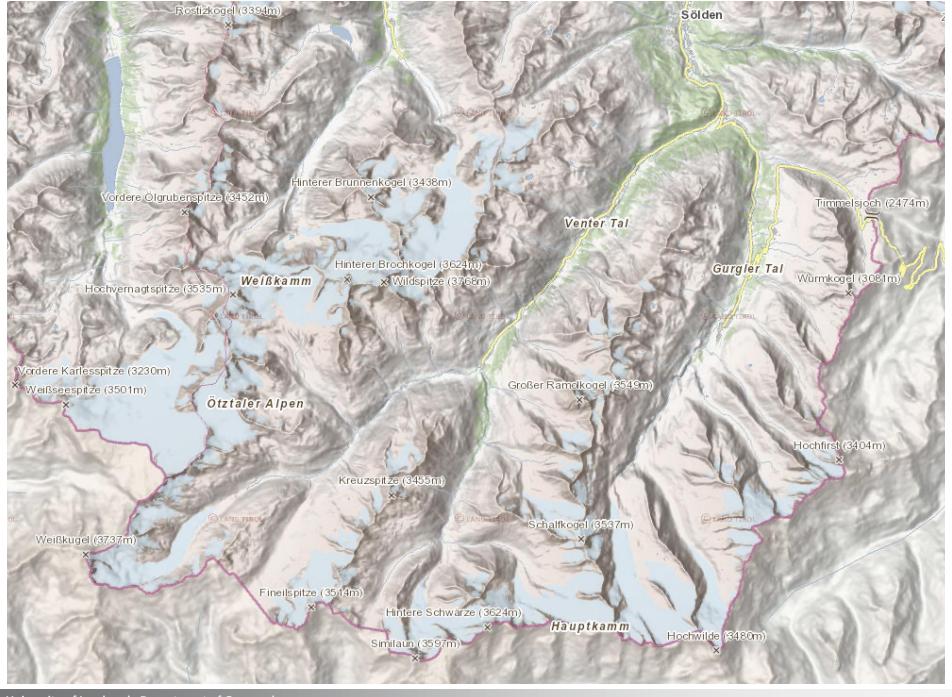


Research Basin Rofental

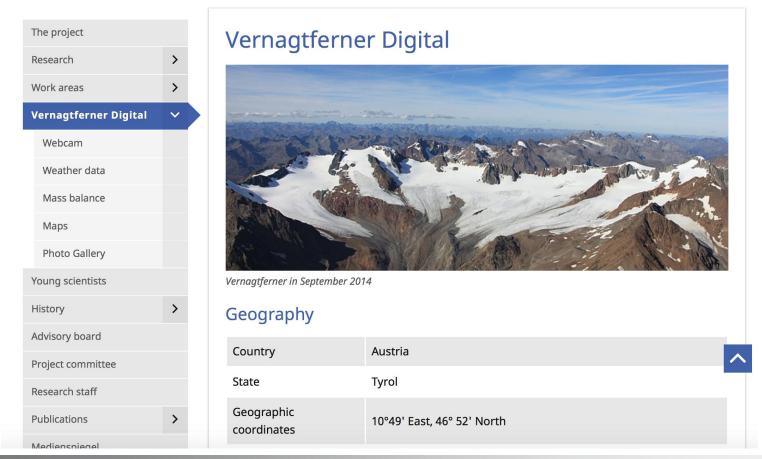
- Ötztal Alps, 1.890 to 3.770 m a.s.l., 98.1 km²
- Joint effort of several institutions and many people, monitoring since 1884
- Data collection available from the GFZ Data Services repository: https://doi.org/10.5880/fidgeo.2023.037


Part of international research initiatives:


- GEWEX INARCH https://www.usask.ca/inarch/
- LTSER platform Tyrolean Alps within LTER Austria, LTER Europe and ILTER http://lter-austria.at/ta-tyrolean-alps
- ERB Euro-Mediterranean Network of Experimental and Representative Basins http://erb-network.simdif.com
- EU Horizon 2020 INTERACT research stations https://eu-interact.org/field-sites/station-hintereis/
- UNESCO IHP http://en.unesco.org/themes/water-security/hydrology



Research Basin Rofental



Rofental cooperation: Academy of Sciences, Munich

Geodesy and Glaciology

Rofental cooperation: ACINN, University of Innsbruck

Staff login

Search Q

Quicklinks ≡

Studies

Research

Connect

About us

Department of Atmospheric and Cryospheric Sciences (ACINN)

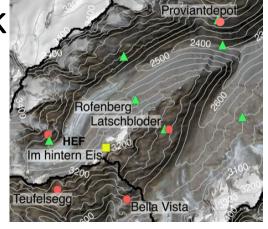
Hintereisferner – an Open Air Laboratory

Hintereisferner (HEF) is a valley glacier located in the inner Ötztal Alps, Austria. It is the key research site for glaciological studies carried out at the Institute of Atmopsheric and Cryospheric Sciences of the University of Innsbruck (ACINN) since many decades. In historical documents, the glacier is mentioned in 1601 for the first time, which is in the context of the formation of an ice dammed lake in front of the glacier (Figure 1).

Similar references date from 1678, 1774, 1770, and 1816. More systematic observations, mainly referring to length changes, began in 1847 and the first regional maps were produced in 1870 and 1888. The first detailed map of HEF dates from 1894, followed by a long series of maps from terrestrial surveys (Figure 2) and since 2001 upgraded by one or two airborne LIDAR surveys per year for geodetic determination of ice volume changes (Figure 3).

ACI	NN	
News and Events		~
Res	earch	~
	Atmospheric Dynamics	
	Atmos. Physics and Chemistry	
	Ice and Climate	
	Atmospheric Turbulence	2
Studies		~
Pec	pple	
Graduate Seminar		~
Pap	ers and Books	
Theses		~
Ope	en Research Data	

Rofental cooperation: Geography,

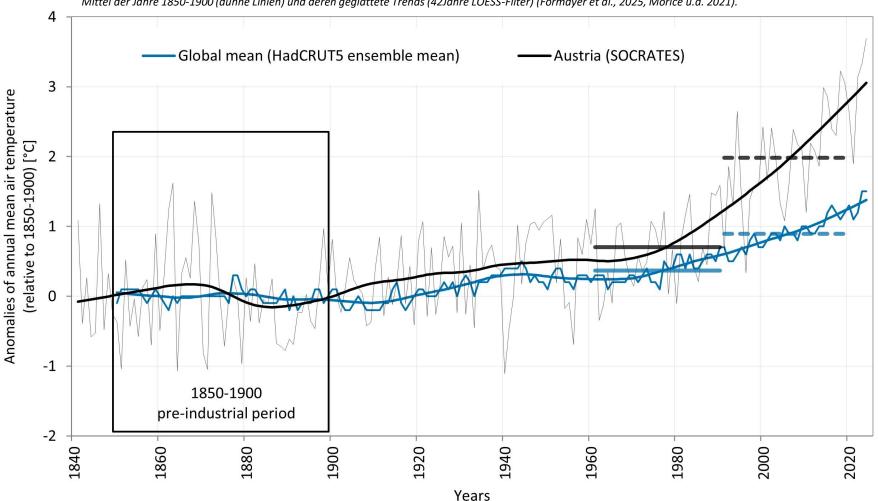

University of Innsbruck

Meteorological data:

Temperature, humidity, wind speed and direction, air pressure, precipitation, radiative fluxes (short- and longwave, up and down)

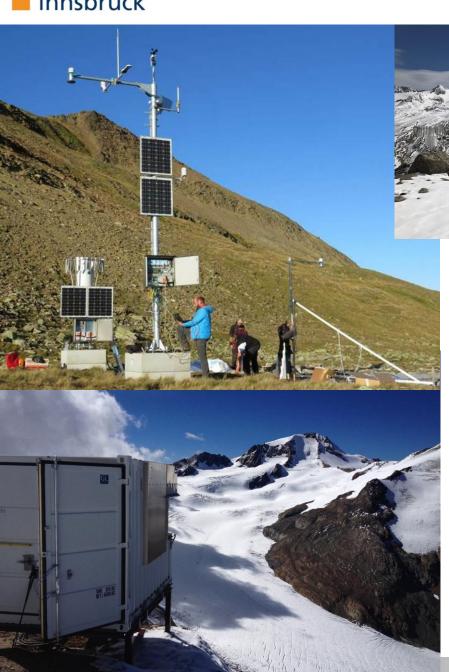
Snow data:

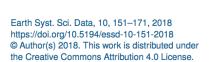
- Bella Vista (2805 m a.s.l.)
 Pair of snow pillow/scale with ultrasonic snow depth, snow temperature profile, acoustic snow drift
- Latschbloder (2919 m a.s.l.)
 Ultrasonic snow depth, snow temperature profile
- Proviantdepot (2737 m a.s.l.)
 Surface temperature, snow depth, snow water equivalent, layered density and liquid water content (snow pack analyzer), snow temperature profile



Rofental cooperation: Hydrographic Service of Tyrol

Entwicklung der mittleren Jahrestemperatur weltweit 1850–2024 (blau) und in Österreich 1841–2024 (schwarz). Dargestellt sind jährliche Abweichungen vom Mittel der Jahre 1850-1900 (dünne Linien) und deren geglättete Trends (42Jahre LOESS-Filter) (Formayer et al., 2025, Morice u.a. 2021).


https://klimaportal.geosphere.at/informationsportal-klimawandel/neoklim_lufttemperatur.html



Research Basin Rofental

The Rofental: a high Alpine research basin (1890–3770 m a.s.l.) in the Ötztal Alps (Austria) with over 150 years of hydrometeorological and glaciological observations

Ulrich Strasser¹, Thomas Marke¹, Ludwig Braun³, Heidi Escher-Vetter³, Irmgard Juen², Michael Kuhn², Fabien Maussion², Christoph Mayer³, Lindsey Nicholson², Klaus Niedertscheider⁴, Rudolf Sailer¹, Johann Stötter¹, Markus Weber⁵, and Georg Kaser²

¹Department of Geography, University of Innsbruck, Innsbruck, 6020, Austria
 ²Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, 6020, Austria
 ³Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Munich, 80539, Germany
 ⁴Hydrographic Service of Tyrol, Innsbruck, 6020, Austria
 ⁵Photogrammetry and Remote Sensing, Technical University of Munich, Munich, 80333, Germany

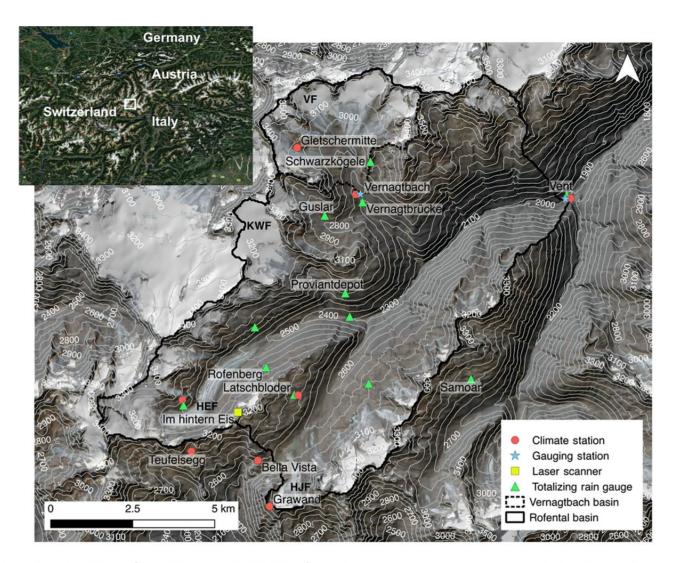
Correspondence: Ulrich Strasser (ulrich.strasser@uibk.ac.at)

Received: 3 August 2017 – Discussion started: 21 August 2017 Revised: 26 November 2017 – Accepted: 18 December 2017 – Published: 24 January 2018

Earth Syst. Sci. Data, 16, 3579–3599, 2024 https://doi.org/10.5194/essd-16-3579-2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Operational and experimental snow observation systems in the upper Rofental: data from 2017 to 2023

Michael Warscher, Thomas Marke, Erwin Rottler, and Ulrich Strasser


Department of Geography, University of Innsbruck, 6020 Innsbruck, Austria

Correspondence: Michael Warscher (michael.warscher@uibk.ac.at)

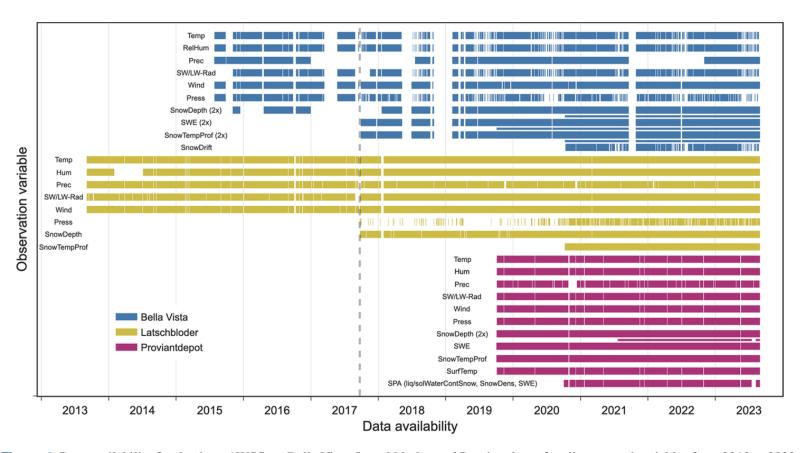
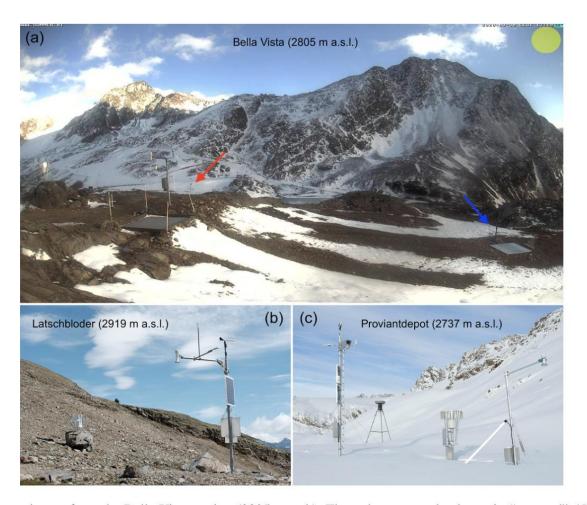
Received: 5 February 2024 – Discussion started: 20 February 2024 Revised: 13 June 2024 – Accepted: 26 June 2024 – Published: 12 August 2024

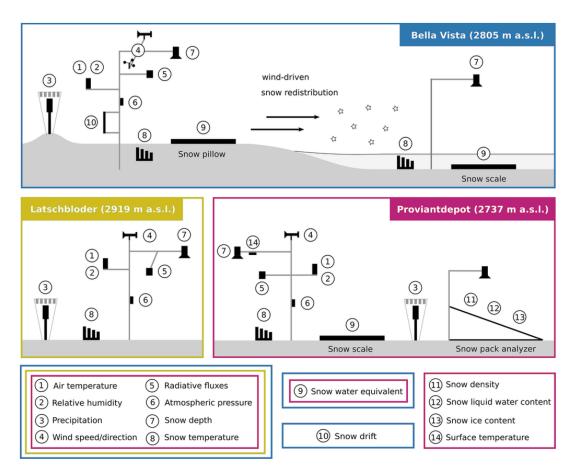
Abstract. This publication presents a comprehensive hydrometeorological data set for three research sites in the upper Rofental (1891–3772 m a.s.l., Ötztal Alps, Austria) and is a companion publication to a data collection published in 2018. The time series presented here comprise data from 2017 to 2023 and originate from three meteorological and snow hydrological stations at 2737, 2805, and 2919 m a.s.l. The fully equipped automatic weather stations include a specific set of sensors to continuously record snow cover properties. These are automatic measurements of snow depth, snow water equivalent, volumetric solid and liquid water contents, snow density, layered snow temperature profiles, and snow surface temperature. One station is extended by a particular arrangement of two snow depth and water equivalent recording devices to observe and quantify wind-driven snow transport. These devices are installed at nearby wind-exposed and sheltered locations and are complemented by an acoustic-based snow drift sensor. We present data for temperature, precipitation, humidity, wind speed, and radiation fluxes and explore the continuous snow measurements by combined analyses of meteorological and snow data to show typical seasonal snow cover characteristics. The potential of the snow drift observations is demonstrated with examples of measured wind speeds, snow drift rates, and redistributed snow amounts during several blowing snow events. The data complement the scientific monitoring infrastructure in the research catchment and represent a unique time series of high-altitude mountain weather and snow observations. They enable comprehensive insights into the dynamics of high-altitude meteorological and snow processes and are collected to support the scientific community, local stakeholders, and the interested public, as well as operational warning and forecasting services. The data are publicly available from the GFZ Data Services repository: https://doi.org/10.5880/fidgeo.2023.037 (Department of Geography, University of Innsbruck, 2024).

U. Strasser et al.: The Rofental

Figure 4. The Rofenache (98.1 km²) and Vernagtbach (11.44 km²) catchments with permanent meteorological stations and the runoff gauges. Background satellite image of the top left inset from maps.google.com, copyrights by Google (2009) and TerraMetrics (2017).

3588


Figure 4. Data availability for the three AWSSs at Bella Vista, Latschbloder, and Proviantdepot for all measured variables from 2013 to 2023. Some variables are recorded with two different sensors at the same location. These are indicated by " $(2\times)$ ", and the narrow bars show the data availability for the second sensor. The dashed vertical line highlights the beginning of the data period presented here (September 2017). The plot is based on daily aggregations of the data. If one 10 min value is missing on a specific day, the entire day is classified as missing data in this figure. The frequent short gaps in atmospheric pressure readings at the Bella Vista and Latschbloder sites are caused by frequent single 10 min data points missing (unidentified malfunction of the logger). The large data gaps at the Bella Vista station were caused by recurring lightning damage.

3586

Figure 2. (a) Webcam image from the Bella Vista station (2805 m a.s.l.). The red arrow marks the main "exposed" AWSS. The blue arrow marks the additional snow measurements (HS, SWE, and snow temperatures) in the slight depression ("sheltered" location). (b) The Latschbloder AWSS (2919 m a.s.l.) with an OTT pluviometer on the left. (c) The Proviantdepot AWSS (2737 m a.s.l.). The ultrasonic snow depth sensor on the right instrument is part of the snowpack analyzer (SPA). The snow scale is buried right in front of the photographer beside the SPA. There is a second snow depth sensor at the main mast (not visible from this angle). Behind the main mast the old totalizing rain gauge can be seen, and in the background the Kesselwandferner can be seen (left, behind the main mast).

M. Warscher et al.: Snow observations in Rofental

Figure 3. Schematic overview of the three AWSSs at Bella Vista, Latschbloder, and Proviantdepot. The color-coded boxes around the numbered variables show the respective equipment installed at each station. The relative arrangement between the instruments in the scheme does not correspond exactly to reality for display reasons.

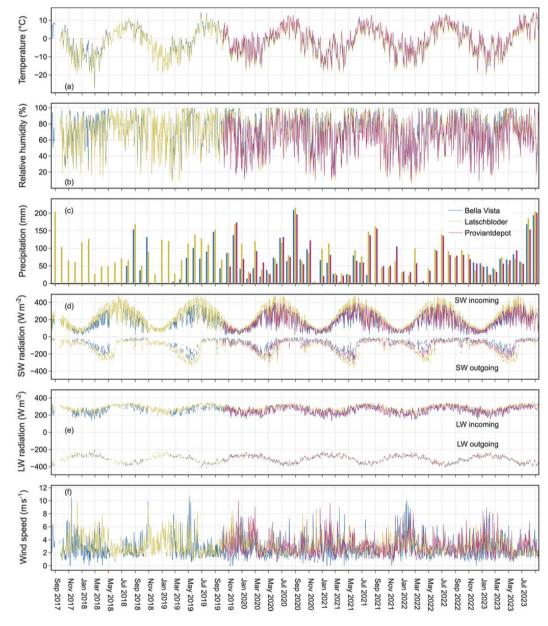


Figure 5. Main meteorological variables (daily averages) at the three stations of Bella Vista, Latschbloder, and Proviantdepot (September 2017 to August 2023). Air temperature (a), relative humidity (b), precipitation (c) (monthly totals), shortwave radiation (d), longwave radiation (e), and wind speed (f).

Geosci. Model Dev., 17, 6775–6797, 2024 https://doi.org/10.5194/gmd-17-6775-2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

openAMUNDSEN v1.0: an open-source snow-hydrological model for mountain regions

Ulrich Strasser¹, Michael Warscher¹, Erwin Rottler¹, and Florian Hanzer^{1,2}

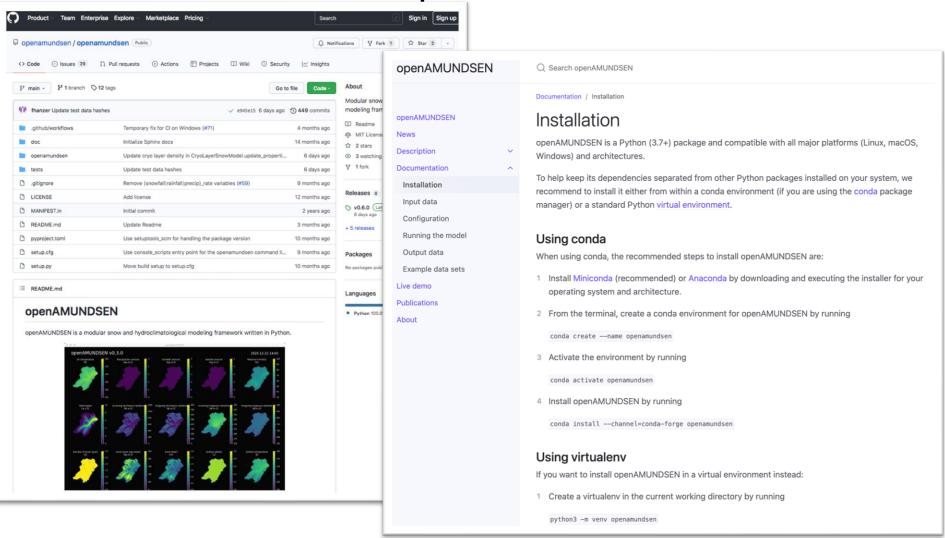
Correspondence: Ulrich Strasser (ulrich.strasser@uibk.ac.at)

Received: 21 January 2024 – Discussion started: 13 March 2024

Revised: 17 June 2024 - Accepted: 20 July 2024 - Published: 12 September 2024

Abstract. openAMUNDSEN (the open source version of the Alpine MUltiscale Numerical Distributed Simulation ENgine) is a fully distributed snow-hydrological model, designed primarily for calculating the seasonal evolution of snow cover and melt rates in mountain regions. It resolves

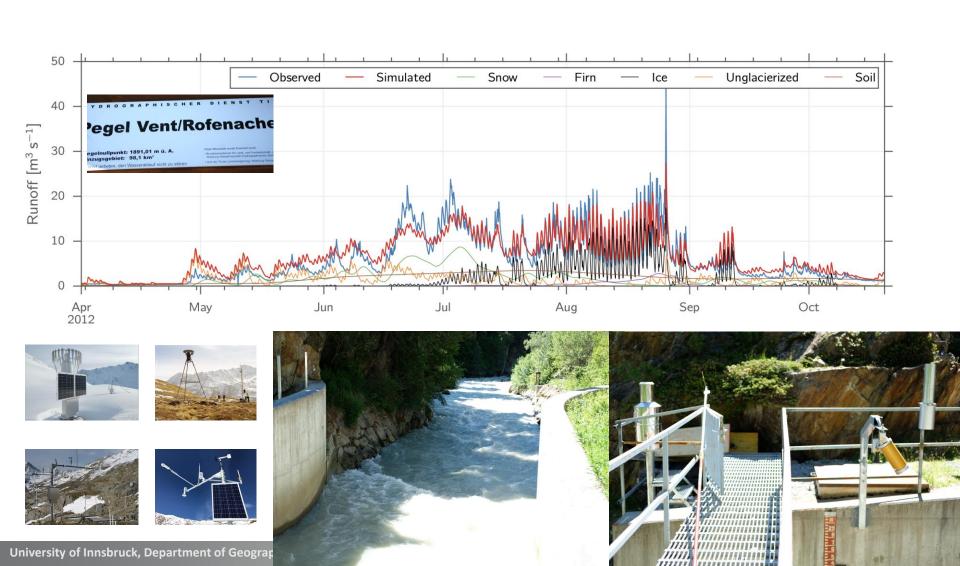
1 Introduction


The seasonal evolution of the mountain snow cover has a significant impact on the water regime, the microclimate, and the ecology of mountain catchments and the downstream

¹Department of Geography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria

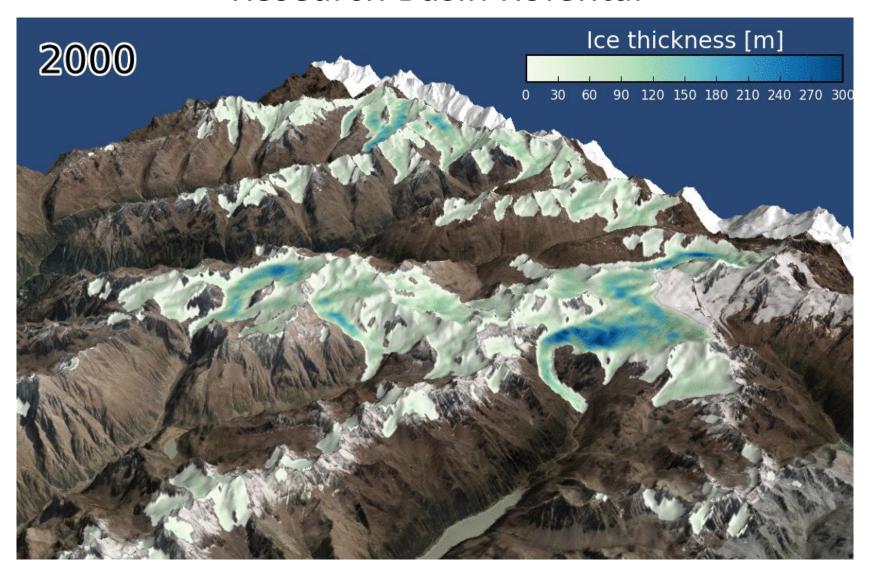
²lumiosys GmbH, Innrain 52, 6020 Innsbruck, Austria

Model: openAMUNDSEN



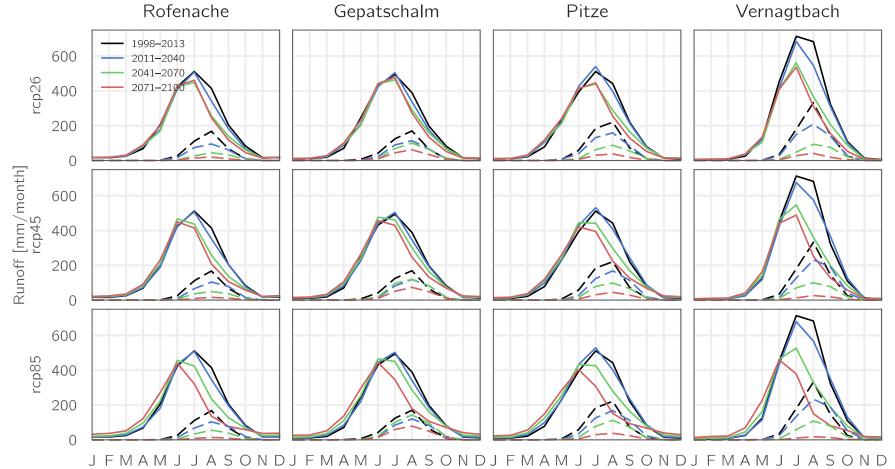
https://github.com/openamundsen/

https://doc.openamundsen.org/



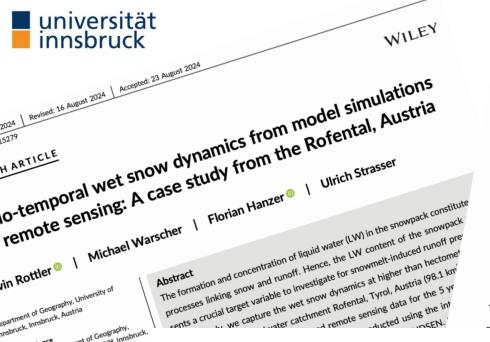
Model: openAMUNDSEN

Research Basin Rofental



Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach

Florian Hanzer^{1,2}, Kristian Förster^{1,3}, Johanna Nemec⁴, and Ulrich Strasser¹


¹Department of Geography, University of Innsbruck, Innsbruck, Austria

³Institute of Hydrology and Water Resources Management, Leibniz Universität Hannover, Hannover, Germany ⁴ENVEO IT GmbH, Innsbruck, Austria

Average monthly runoff (multi-model mean ±1 SD indicated as shaded bands) as simulated for the early, middle, and late 21st century for four catchments/gauges and the three emission scenarios. Dashed lines indicate bare ice melt runoff. From Hanzer et al. (2018).

²Wegener Center for Climate and Global Change, University of Graz, Graz, Austria

The Cryosphere, 10, 1859–1881, 2016 www.the-cryosphere.net/10/1859/2016/ doi:10.5194/tc-10-1859-2016 © Author(s) 2016. CC Attribution 3.0 License.

Hydrol. Earth Syst. Sci., 22, 1593-1614, 2018 https://doi.org/10.5194/hess-22-1593-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License.

Hydrolo Earth S Sci

Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach

Florian Hanzer^{1,2}, Kristian Förster^{1,3}, Johanna Nemec⁴, and Ulrich Strasser¹ Department of Geography, University of Innsbruck, Innsbruck, Austria

Wegener Center for Climate and Global Change, University 3 Institute of Hydrology and Water Resources

az, Austria ersität Hannover, Hannover, Germa

h 2018

enario, whereas runoff volumes de 1) and 47% (summer) towards the -2100), accompanied by a shift in

Multilevel spatiotemporal validation of snow/ice mass balance and runoff modeling in glacierized catchments

Florian Hanzer^{1,2}, Kay Helfricht³, Thomas Marke², and Ulrich Strasser²

Correspondence to: Florian Hanzer (florian.hanzer@uibk.ac.at)

Received: 2 March 2016 – Published in The Cryosphere Discuss.: 5 April 2016 Revised: 13 July 2016 – Accepted: 7 August 2016 – Published: 25 August 2016

Erwin Rottler, Department of Geography. erwin rouser, Jopanimen of Seography, University of Innsbruck, Innrain 52f, Innsbruck,

ESA EXPRO+ AIDSnow - Alps Regional

EJA EATRUT MUDITION MUDISTREE NO.

Email: erwin.rottler@uibk.ac.at

4000132770/20/I-NB

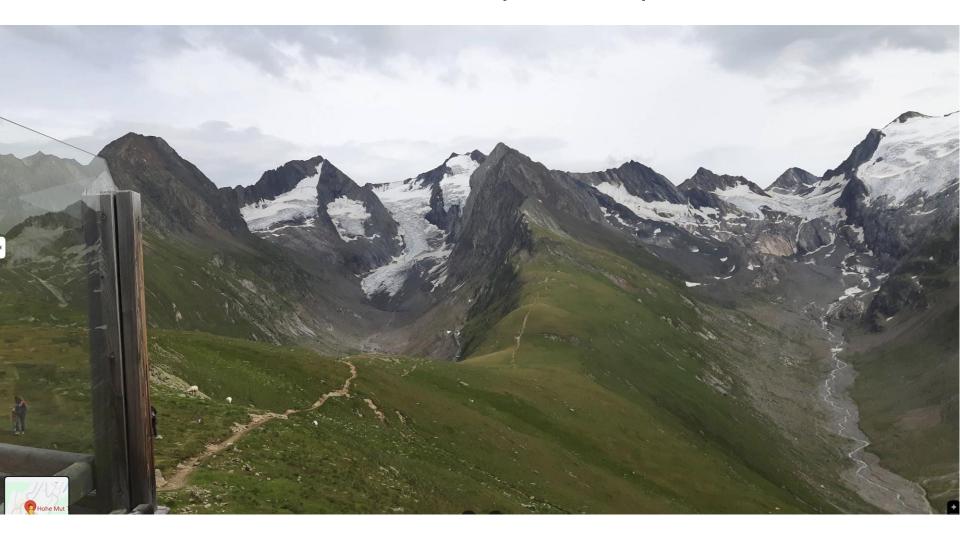
Funding information

¹alpS – Centre for Climate Change Adaptation, Innsbruck, Austria

²Institute of Geography, University of Innsbruck, Innsbruck, Austria

³Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innsbruck, Austria

Research Basin Rofental – new projects



Hohe Mut (2670 m)

