

Advanced MINING TECHNOLOGY CENTER

Relative influence of wind and avalanche redistribution at the mountain range scale in the South American Andes

María Courard Diego Hernández Alonso Mejías James McPhee

## Chile is a mountain country where snow accumulation plays a critical hydrological role.

Recent efforts at retrospective modeling and reanalysis provide many insights, but no operational SWE estimates exist for the region.





## We aim to characterize and represent snow spatial variability relevant for hydrological applications







Cornwell et al. (2016)

## Snowpack modelling with CHM

### Canadian Hydrological Model (CHM; Marsh et al., 2020):

- Cold regions: snow processes
- <u>Modular</u>: activate/deactivate processes
- <u>Spatially distributed</u>: unstructured triangular meshes
- Designed for high-performance computing



Essery (2015)







Bernhardt and Schultz (2010)

## Initial model deployment in the Santiago area



| Min<br>theoretical<br>area (m²) | Max RMSE<br>(m) | Number of triangles | Area range<br>(m²) | Median area<br>(m²) | Mean area<br>(m²) | Mean<br>resolution<br>(m) |
|---------------------------------|-----------------|---------------------|--------------------|---------------------|-------------------|---------------------------|
| 2 500                           | 15              | 215 000             | 400 –<br>1 780 000 | 18 000              | 27 600            | 166                       |

## The model domain contains two experimental catchments plus operational snow and met stations









#### WORKFLOW PREPARATION

Goal: Initialize workflow execution

#### Actions:

Create data folder structure separate from code folder
 Make domain discretization accessible
 Define workflow settings

Models may require the modeling domain to be discretized into model elements. Here, these take the shape of sub-basins and river segments, stored as polygons in an ESRI shapefile.

#### Jser interaction after workflow setup has been prepared is minir

#### MODEL-AGNOSTIC PREPROCESSING

Goal: Prepare meteorological and geospatial input data

#### Actions:

 Download raw meteorological and geospatial data
 Data-specific processing (e.g. set consistent Coordinate Reference Systems, ensure standard file formats)
 Subset data to domain of interest

### (left to right) Digital Elevation Model, soil classes and land classes, stored as pixel values in GeoTIFF files.

### (OPTIONAL) REMAPPING

Goal: Unify spatial discretization of data and model elements

Actions:

- Map preprocessed input data onto model elements (e.g. re-grid, grid-to-polygon, polygon-to-polygon, etc)



**Top**: sub-basin polygons (step 1) are superimposed on gridded

|                                                          |                                                                                                                                                         | ,,,,,                                                  |  |  |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
|                                                          |                                                                                                                                                         |                                                        |  |  |
| MODEL-SPECIFIC PREPROCESSING                             |                                                                                                                                                         | Models can be quite particular                         |  |  |
| Goal: generate simulations with selected models and data | Docs + Inpat/Dutput + SUMMA Input                                                                                                                       | in how they expect their input                         |  |  |
| Goal. generate simulations with selected models and data | SUMMA Input Files                                                                                                                                       | data. Separating model-<br>agnostic and model-specific |  |  |
| Actions:                                                 | SUMMA has a large number of insut files that configure the model and                                                                                    | processing steps lets the pre-                         |  |  |
| - Convert model-agnostic input data to model-specific    | provide the necessary initial conditions and time-varying boundary<br>conditions to make a model simulation. This can at time be confusion.             | processed data feed efficiently                        |  |  |
| input files                                              | We encourage the user to look at the SUMNA test cases, which provide<br>working SUMMA setups.                                                           | into multiple models. By stand-                        |  |  |
| - Install model(s)                                       | Input file formats                                                                                                                                      | ardizing model-agnostic output                         |  |  |
|                                                          | SUMMA input fries are either ASCII format or NetCDF. The general                                                                                        | formats, new data can be used                          |  |  |
| <ul> <li>Run model(s) to generate simulations</li> </ul> | characteristics of these files are described in the next two subsections,<br>while the contents of the individual input files are described after that. | without changing model-<br>specific code.              |  |  |



Model-agnostic and model-specific preprocessing steps kept separate.

- 1. Workflow preparation: domain discretization in TIN
- 2. Model-agnostic preprocessing
  - a) NWP met forcings:ECMWF, ERA5-Land)
  - b) Scaled station-based local gridded met. reference product (Álvarez-Garretón et al., 2018; Boisier, 2023) -> daily precipitation, max/min air temperature
  - c) Downscaling of a. based on b.
- 3. Remapping of preprocessed forcings to model elements
  - a) Elevation gradients
  - b) Wind mapping
- 4. Model-specific preprocessing

Knoben et al. (2022)

### We force the model with ECMWF-HRES downscaled to station-based local products -> development stage aimed at real-time forecasts



Precipitation and air temperature: monthly lapse rates







Barcons et al. (2018)

## Assessing the skill and downscaling of NWP data through experimental catchment observations and gridded product



## ± 5°C uncertainty in daily air temperature

## ± 50% uncertainty in annual precipitation

## Assessing the skill and downscaling of NWP data through experimental catchment observations and gridded product



Wind properties reasonably represented at existing stations.

### Model evaluation – SCA distribution

no-

snow

d

d





### Model evaluation – SCA distribution



### Model evaluation – SCA time series



- + Good correlation
- + Events well represented

- Systematic bias in spring (but maybe in the reference product, too)

### Model evaluation – SCA time series



- Systematic bias in spring (but maybe in the reference product, too)

# Simulated albedo seems high compared with R.S. retrievals



# Against the few point-scale SWE observations in the area, adequate timing and magnitude.





## Snow Depth evaluation: 1 km2-scale



|             |       | Depth |      | CV    |      |      |
|-------------|-------|-------|------|-------|------|------|
|             | Lidar | CHMr  | CHMn | Lidar | CHMr | CHMn |
| Avg 7 scans | 0,75  | 0,61  | 0,62 | 0,52  | 0,26 | 0,19 |



33.304°S -33.306°S

33.308°S 33.310°S 33.312°S

33.314°S 33.316°S

70.265°W

LIDAR

10.260°W 10.255°W



2019-07-04

2019-06-02









## Snow depth evaluation: 100 km2 -scale



### with redistribution

no redistribution

Pleïades data from Shaw et al. (2019)

## Snow depth evaluation: 100 km2 -scale





Snow Depth (m)

2 4 6 8

### Pleïades data from Shaw et al. (2019)

## Snow depth evaluation: 100 km2 -scale





## Contribution of simulated redistribution processes



## Summary

- Efficient implementation of high-resolution snow model with redistribution by wind and avalanching
- Bias corrected NWP forcings reproduce:
  - Timing of SWE accumulation
  - Large-scale precipitation patterns
- Ongoing work:
  - Better assessment of density vs. depth estimation
  - Melt dynamics -> albedo, Sw input
  - Structural uncertainty Yerel Morales
  - Parameter estimation Elizabeth Ramirez
  - Data assimilation Cristobal Sardá



Advanced MINING TECHNOLOGY CENTER

Relative influence of wind and avalanche redistribution at the mountain range scale in the South American Andes

María Courard Diego Hernández Alonso Mejías James McPhee