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Motivation: the need to provide answers to specific 

questions

Seasonal streamflow forecasting 

(Araya et al., 2023)
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Figure 7: Runoff contribution from ice melt, snow melt and rain from the headwater regions defined by the 1955 glacierized areas. 

The units are normalized by the Maipo River Basin area. (a) Total annual contribution, (b) summer contribution, and (c) seasonal 920 
average contribution. The percentage of each contribution over the period 1955-2016 are indicated next to the legend.  
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Annual contributions

Summer contributions

Glacier influence on 

streamflow (Ayala et al., 

2020)

Extreme event impacts



Reliable hydrological predictions in high-mountain areas 

remain an elusive objective

● Little to no observational meteorological 

networks

● Mountain precipitation unknown

● Limited remote-sensing capabilities 

○ complex topography

○ cloudiness

○ high SWE accumulation

● Modeling parameterizations not yet fully 

tested in diverse geographic settings

● Feedback cycles: understanding and 

modeling

○ eg. glacier albedo

○ eg. marginal snowpacks



What can we learn from alpine experimental catchments 

and research stations?



CWARHM Approach (Knoben et al. 

2022)

1. Workflow preparation: domain 

discretization in 1) TIN; 2) Grid; 3) HRU

2. Model-agnostic preprocessing
a. NWP and reanalysis met forcings (ECMWF, 

ERA5-Land)

b. Scaled station-based local gridded met. reference 

product (Álvarez-Garretón et al., 2018; Boisier, 

2023) -> daily precipitation, max/min air 

temperature

c. Downscaling of a. based on b.

3. Remapping of preprocessed forcings to 

model elements

4. Model-specific preprocessing

5. Visualization and analysis
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Figure 1. High-level overview of a workf low that separates model-agnostic and model-specif ic tasks. Model-agnostic tasks are shown in blue and model-specif ic 

tasks are shown in orange and red. A similarly high-level but more technical f lowchart of such a workf low, using SUMMA (a process-based hydrologic model) and 

mizuRoute (a routing model) as example models, can be found in Figure A2. Technical details of our implementation of model-agnostic and model-specif ic processing 

steps can be found in Figures A3 and A4, respectively.
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SP-1. Regional Snow Modeling with CHM



Local wind speed observations 

Wind speed: monthly 

correction factor applied to 

NWP output (ECMWF)

2-3 fold increase in w.s. 

during winter months.



High-resolution snow depth

100 km2

Few acquisitions 

per season+

m-scale

1 km2

Few acquisitions 

per season

cm-scale 



Continuous snow depth



SP-3. Glaciohydrological impacts with CRHM

Just a few ablation measurements allow to 

identify strengths and weaknesses



SP-3. Glaciohydrological impacts with CRHM

We selected two of the basins with the 

largest glacier area in the extratropical 

Andes: Rio Olivares (-33.49°) and 

Tinguiririca Bajo los Briones (-34.72°)

Basin
Area 

(km2)

Glacier 

area (km2)

Annual 

pp (mm)

Mean temp 

(°C)

Olivares 

River
542 73 455 2.8

Tinguiririca 

Bajo los 

Briones

1438 66 1418 4.2



SP-3. Tinguiririca basin evaluation

Variable RMSE R2 KGE r

pearson

α β

SWE

(m.w.eq)

0.10 0.90 0.85 0.96 0.91 1.11

FSCA 

(%)

9.86 0.85 0.89 0.95 1.06 1.08



SP-3. Olivares basin evaluation (parameters from Tinguiririca)

Variable RMSE R2 KGE r

pearson

α β

SWE

(m.w.eq)

0.08 0.80 0.85 0.96 1.15 1.23

FSCA 

(%)

19 0.70 0.70 0.87 1.25 1.09



SP-2. Drought impacts with MESH

Water years are classified into El Niño, Neutral, La Niña, and Megadrought.

Setup: 5 x 5 km grid cells, GRUs defined by land cover and aspect, MMESH enabled.

Dominant land cover classes:

Bareland: 57 to 68 %

Shrubland: 9 to 20 %

Grassland: 4 to 22 %

Glacier: 3 to 11 %

2018 INARCH



Average anomalies

Variable La Niña Megadrought

Precipitation (%) -19.3 -26

Storms temperature (°C) -0.3 0.2

Temperature JJA (°C) -0.3 0.2

Temperature OND (°C) 0.2 0

Temperature JFM (°C) -0.3 0.5

SP-2. Drought impacts with MESH

From total precipitation to solid precipitation and then snow

accumulation, the deficit amplifies for the megadrought but softens for

La Niña years (in %).

This modulation is possibly related to the seasonal temperature

anomalies (LN and MD capture well-defined meteorological signatures).



SP-2. Drought impacts with MESH

These three variables are already scaled by annual precipitation and could be

interpreted as efficiencies.

The MD depicts less efficiency in producing snowmelt (compared to the long-term

average) and producing runoff (compared to LN), and more efficiency in producing

evaporation.

Average 

anomaly

Annual Qglacier, 

compared to 

long-term 

average (%)

Summer Qglacier, 

compared to 

long-term 

average (%)

LN MD LN MD

Aconcagu

a

-39 -80 -66 -84

Mapocho -36 -77 -64 -83

Maipo -22 -49 -37 -53

Cachapoal -22 -34 -46 -43

Tinguiririca -22 -32 -50 -45

Long-term 

average

Annual 

contribution: 

Qglacier to Q (%)

Summer 

contribution: 

Qglacier to Q (%)

Aconcagu

a

3.6 7.8

Mapocho 2.8 5.9

Maipo 6 16

Cachapoal 7.8 23.2

Tinguiririca 5.8 20.3

Glacier GRU variables:



Summary and perspectives

● Physically based modeling tools offer the opportunity to assimilate data from

diverse sources

● Experimental catchments are key to test hydrological hypotheses and identify

avenues for improvement in hydrological predictions

● Combination of defensible models + assimilation of remote/in-situ data 

emerging as desirable strategy for timely hydrological predictions for social 

preparedness.
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