Leveraging experimental catchment data for model verification- Andes

James McPhee – Universidad de Chile INARCH Meeting October 15, 2024

Motivation: the need to provide answers to specific questions Extreme event impacts

Seasonal streamflow forecasting (Araya et al., 2023)

Glacier influence on streamflow (Ayala et al., 2020)

Reliable hydrological predictions in high-mountain areas remain an elusive objective

- Little to no observational meteorological networks
- **Mountain precipitation unknown**
- Limited remote-sensing capabilities
	- complex topography
	- cloudiness
	- high SWE accumulation
- **Modeling parameterizations not yet fully** tested in diverse geographic settings
- Feedback cycles: understanding and modeling
	- eg. glacier albedo
	- eg. marginal snowpacks

What can we learn from alpine experimental catchments and research stations?

CWARHM Approach (Knoben et al. 2022)

- 1. Workflow preparation: domain discretization in 1) TIN; 2) Grid; 3) HRU
- 2. Model-agnostic preprocessing
	- a. NWP and reanalysis met forcings (ECMWF, ERA5-Land)
	- b. Scaled station-based local gridded met. reference product (Álvarez-Garretón et al., 2018; Boisier, 2023) -> daily precipitation, max/min air temperature
	- c. Downscaling of a. based on b.
- 3. Remapping of preprocessed forcings to model elements
- 4. Model-specific preprocessing
- 5. Visualization and analysis

SP-1. Regional Snow Modeling with CHM

Local wind speed observations

Wind speed: monthly correction factor applied to NWP output (ECMWF)

2-3 fold increase in w.s. during winter months.

High-resolution snow depth

100 km2 Few acquisitions per season+ m-scale

1 km2 Few acquisitions per season cm-scale

 $33.304\text{°S} - d$ 33,306°S 33.308% B 33.310°S • 33.312

> 33.314°5 33.316°S

Continuous snow depth

SP-3. Glaciohydrological impacts with CRHM

SP-3. Glaciohydrological impacts with CRHM

SP-3. Tinguiririca basin evaluation

SP-3. Olivares basin evaluation (parameters from Tinguiririca)

Dominant land cover classes:

 -70.5

Setup: 5 x 5 km grid cells, GRUs defined by land cover and aspect, MMESH enabled.

SP-2. Drought impacts with MESH

From total precipitation to solid precipitation and then snow accumulation, the deficit amplifies for the megadrought but softens for La Niña years (in %).

This modulation is possibly related to the seasonal temperature anomalies (LN and MD capture well-defined meteorological signatures).

SP-2. Drought impacts with MESH

Glacier GRU variables:

These three variables are already scaled by annual precipitation and could be interpreted as efficiencies.

The MD depicts less efficiency in producing snowmelt (compared to the long-term average) and producing runoff (compared to LN), and more efficiency in producing evaporation.

Summary and perspectives

- Physically based modeling tools offer the opportunity to assimilate data from diverse sources
- Experimental catchments are key to test hydrological hypotheses and identify avenues for improvement in hydrological predictions
- Combination of defensible models + assimilation of remote/in-situ data emerging as desirable strategy for timely hydrological predictions for social preparedness.

Leveraging experimental catchment data for model verification- Andes

James McPhee – Universidad de Chile INARCH Meeting October 15, 2024

