Watershed Hydrology Changes Across Scales Resulting from Land Cover and Climate Changes

Timothy E. Link Enhao Du Liang Wei

University of Idaho

Objective and Questions

- Develop a more *holistic* understand of the hydrologic future in the interior Pacific Northwest
- Question: How are flow regimes in a watershed spanning the rain/snow transition zone expected to change?
	- Due to forest harvest and regeneration?
	- Due to climate change?
	- Similarities and differences?
	- \blacksquare Across scales? (1st to 4th order watersheds)

Baseline: ~80 year 2nd growth forest

Land Cover Change Montane Forested Watersheds

Many Experimental Watershed Studies: ■ Discrete Impact → Forest **Regeneration** ■ 50 -100% harvest **Low age diversity**

Land Cover Change Montane Forested Watersheds

Working Forests: ■ Successive **Disturbance** → → → → →

■ Continuous **Regeneration**

Age diversity generally increases with scale

Mica Creek Experimental Watershed

- **Location:** N. Central Idaho **Climate:**
	- **-** Continental/Maritime
	- Transitional Snow Zone

Site Characteristics

\blacksquare Size

- \blacksquare 27 km²
- \blacksquare ~6700 ac

■ Elevation

- **1000-1625 m**
- \blacksquare 3200 5240 ft

■ Precipitation

- 1440 mm/yr
- \blacksquare ~57 in/yr
- Vegetation: ~80 yr Mixed conifers
- Active Forest Management
	- Diversity of age classes

Image courtesy of C. Deval

Simulation Approach: Physically-Based, Virtual Experimental Watershed

- Distributed Hydrology Soil Vegetation Model (**DHSVM**)
- Detailed Internal Watershed Data
	- Parameterization
	- Validation
- Quasi Monte-Carlo Parameterization
- **Simulate Alternative Futures**

DHSVM schematic

(Wigmosta, 1994)

Mica Creek: Data Collection

Soil properties Soil moisture

Flow, chemistry & isotopes

Distributed Hydrometeorology

Throughfall

Snowpack properties Sap Flux

To get the correct answer for the correct reasons!

Model Performance Assessment ■ Streamflow Example \blacksquare ME: 0.62 to 0.72 ■ Also: Snow, soil water, and sapflow

Du et al., 2014, Hyd. Proc.

Simulated Harvest Units

 \blacksquare 40 yr rotation \blacksquare ~2.5% per year $\overline{\bullet}$ ~50 yr rotation in practice ■ 80 yr rotation ■ Not discussed here

Forest Growth Simulation

Biophysical parameter estimation

- LAI and DBH: 3-PG
- Tree height: PROGNOSIS
- Minimum stomatal resistance (R_{smin}) :
- Based on *in situ* observations
- Empirical relationship to tree height

Annual Water Yield Land Cover Change

Sustained increases at larger scales

High Flows (95th Percentile) Land Cover Change

Sustained increases at larger scales

Aug – Sep Low Flows Land Cover Change

Large Scales: May slightly offset climate effects

Small Scales: May offset or exacerbate climate effects

Depends on age

Climate Change

Winter (DJF) Rain:Snow Regime

Klos, P. Z., Link, T. E., & Abatzoglou, J. T. (2014). Extent of the rain -snow transition zone in the western U.S. Under historic and projected climate. *Geophysical Research Letters*, 41, 4560 – 4568. doi:10.1002/2014GL060500

Climate Change

- Patterns of snow metrics are all similar:
	- Rain:snow ratio
	- Peak snow depth
	- Melt timing
	- Successive snow droughts
	- Declining low flows...

Marshall, A. M., J. T. Abatzoglou, T. E. Link, and C. Tennant. 2019. Projected changes in interannual variability of peak snowpack amount and timing in the western United States. Geophysical Research Letters, 46(15), 8882-8892. https://doi.org/10.1029/2019GL083770.

Projected Temperatures AR5, RCP 4.5 & 8.5

- Warmer - Less in winter - High uncertainty

Projected Precipitation AR5, RCP 4.5 & 8.5

- Annual increase
	- Wetter winters
- Drier summers

Projected Snow and Streamflow

10 GCM ensemble

Landcover + Climate Effect:

Cumulative Streamflow

Harvest Effect is Minimal Compared to Climate **12 vs 69 days**

- **Based on 100% Harvest!**

Hydrometeorological Mythology and Future Directions…

- Ta decreases with elevation
- SDD increases with elevation
- Extent and persistence of cold air pools
- Buffer for climate effects?

Hubbart, J. A., Link, T. E., and Gravelle, J. A. (2015), Forest Canopy Reduction and Snowpack Dynamics in a Northern Idaho Watershed of the Continental-Maritime Region, United States, *Forest Science*, *61*(5), 882-894, doi:10.5849/forsci.14-025.

Hydrometeorological Mythology and Future Directions…

Wei, L., Zhou, H., Link, T. E., Kavanagh, K. L., Hubart, J. A., Du, E., Hudak, A. T., and Marshall, J. D. (2018), Forest productivity varies with soil moisture more than temperature in a small montane watershed, Agricultural and Forest Meteorology, 259211-221, doi:10.1016/j.agrformet.2018.05.012.

Summary

- Profound climate-driven flow regime changes are underway
	- Across all scales
	- \blacksquare Expected to slow in late century
- Climate changes have larger effects on timing
- Land cover changes have larger effects on flows
	- Harvest effects on annual and low flows *reverse as scale increases*
	- Reduces or exacerbates climate effects

Mica Creek Experimental Watershed History

1990: Equipment Installed - 7 flumes, met "tower", SNOTEL **1991 – 2002**: Baseline monitoring **2003 – 2007**: 1st Intensive Field Campaign - snow, sap flux, isotopes, micromet, stream temperatures, … **2008 – 2019**: Baseline monitoring **2020…**: Transfer to UI, Equipment replacement underway

Thank You! Questions?

University_{of} Idaho

Extra Slides

Projected Annual Water Yield RCP 8.5

Negligible increasing trend

95th Percentile Flows RCP 8.5

Slight Increasing trend

Aug - Sep Low Flows RCP 8.5

Decreasing trend

RCP 4.5: Effects more muted

simulations

Findings

■ Land Cover Changes:

■ Small scales: Variable flow changes over time

- Large scales: Sustained flow increases
- Timing: Minimal effects
- Projected Climate Changes:
	- Small yield and highflow increases
	- Declining low flows
	- Timing: Large shift
	- Across all scales

Degree of Disturbance and Downstream Flow Changes -

10 parameter sets

Changing Rain-on-Snow (ROS) Regime

Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., Liu, C., Barlage, M., & Rasmussen, R. (2018). Projected increases and shifts in rain-onsnow flood risk over western North America. Nature Climate Change, 8, 808- 812.

Slower Melt in a Warmer World

2071- 2100

Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., & Rasmussen, R. (2017). Slower snowmelt in a warmer world. Nature Climate Change, 7(3), 214-219.

Results: Rotation Harvesting

- ET & S
- Annual flow
- 5th Percentile flows

Low Flow Changes Across Scales

Coble, A. A., Barnard, H., Du, E., Johnson, S., Jones, J., Keppeler, E. et al. (2020). Long-term hydrological response to forest harvest during seasonal low flow: Potential implications for current forest practices. Science of The Total Environment, 138926.

Forestry and Low Flows

Time

Western OR **~100% harvested**

~50% decline in low flows

- Basin sizes:
	- 9 to 101 ha

- 22 to 250 ac

- Following harvest & regrowth

Perry, T. D., & Jones, J. A. (2016). Summer streamflow deficits from regenerating Douglas-fir forest in the Pacific Northwest, USA. *Ecohydrology*, *10*(2), e1790.

Forestry, Low Flows, and Fish

Gronsdahl, S., Moore, R. D., Rosenfeld, J., McCleary, R., & Winkler, R. (2019). Effects of forestry on summertime low flows and physical fish habitat in snowmelt‐dominant headwater catchments of the Pacific Northwest. *Hydrological Processes*.

Background

- Timber Harvest and Flow Regime Questions
	- Annual Yield (e.g. Stednick, 1996)

E Peak Flow Magnitude (Jones & Grant, 1996; Thomas & Megahan, 1998; Bowling et al., 2000)

■ …and effects on geomorphology and fish (Tonina et al., 2008)

BEAK Flow Frequency (Alila et al., 2009; Green & Alila, 2012)

■ Low flow declines (Perry and Jones, 2016)

■ …and effects on fish habitat (Gronsdahl et al., 2019)

■ Low flow enhancement (Sun et al., 2018)

The Motivation

Model Performance Assessment ■ Snow ■ ME: 0.95

Du et al., 2014, Hyd. Proc.

Model Validation: SWE 2006

Du et al., 2014, Hyd. Proc.

Model Performance Assessment

■ Soil Water Content

Du et al., 2014 Hyd. Proc.

Model Performance Assessment

■ **ET and Sapflow**

Du et al., 2014, Hyd. Proc.