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X010 Glacier retreating at the rate of 10 meter per year (Sources: GEN/DHM; R.B.
Kayastha)




Imja Glacier Lake
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Tsho Rolpa Glacier Lake

Development of Tsho Rolpa Glacier Lake
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DHM (Govt of Nepal) lowered 2 of the potentially dangerous - Tsho Rolpa and Imja Lakes

Imja Glacial Lake Tsho Rolpa Glacial Lake
(Photo source: Gyawali, WECS) 4



Sikkim Flash Floods Highlights: Death toll rises to

18, nearly 100 people remain missing
1 minread . Updated: 06 Oct 2023, 08:02 AM IST

Livemint

Sikkim Flash Floods Live Updates: At least 18 people were killed and 102 are missing
after heavy rains caused a glacial lake in Sikkim to burst its banks.
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Sikkim floods: Bridges of BRO's project 'Swastik' washed away by flood in
Chungthang and Mangan area of North Sikkim on Thursday (PTI)
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Cryospheric Sciences in the Himalayas

e Glaciers of the Himalayas are

retreating.
o Glacier lakes are forming and

expanding
o Higher chances of GLOF
e There are changes in the
monsoon and winter climate.
e Hydro-climate processes of the
high Himalayas are largely
different from those of the

lowlands.

Cold Region Hydrological
Modelling Platform (CRHM) in

the Himalayas
o Future Climates
o Changes in Precipitation Phases
o Black Carbon (BC)
Cryosphere-induced Disasters
o Birendra Lake Flood
o Thame Flood



Modelling

Modular Structure CRHM: The Cold Regions HydrologicalModel
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Langtang River Basin
& Langshisha Sub-basin

Location of Langshisha Glacier Research Basin, Nepal
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E Langshisha old hydrological station
D Langshisha glacier research basin
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HRU, Hydrological
Response Units

Intersect of 3+2 layers in
ArcGIS interface

Langshisha Glacier Basin
Land cover type Area | % cover
(Km?)
Firn 12.0 22.0
Ice 3.7 6.7
Debris cover glacier 4.7 8.5
Pasture 13.9 254
Bare 20.5 37.4
Total 54.8 100.0




Bias-corrected Reanalysis Data

Daily Temperature Data Comparison
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Discharge Data Challenge (Langtang River Basin)

' — DHM "’\
— ICIMOD

—
[}
1

—
(=]
1

Observed discharge [ m3s_1]
o

T T
2013 2014

DHM: Department of Hydrology and Meteorology, Govt. of Nepal
ICIMOD: International Centre for Integrated Mountain Development



Model Validation

Langshisha Glacier Research Basin

The model could catch the
overall hydrological pattern.

Insufficient understanding
of important hydrological
processes (groundwater
flow, routing)
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Runoff [mm/day]
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Langtang River Basin

Daily averaged streamflow from 2012 to 2018.
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Basin Runoff [mm/day]
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Basin Runoff [mm/day]
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Precipitation Phase

Rain and Snow Ratio over Years
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Precipitation (mm)
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Black Carbon (BC) induced snow albedo change

Season Atmospheric | Albedo
BC (ug/m3) reduction
(%)
pre-monsoon 0.73 5.08
monsoon 0.23 1.6
post-monsoon 0.29 2.02
winter 0.46 3.2

Gul et al. (2021) provided a 5.08% albedo
change for 0.73 ug/m3 atmospheric BC
concentration during the pre-monsoon and
provided atmospheric concentration for other
seasons.

Albedo change for other seasons was
interpolated using the pre-monsoon albedo
change and atmospheric BC concentration.

This approach has limitations and the
assumption that the atmospheric BC deposits
on snow and affects the snow albedo similarly
to all seasons.



BC-induced firn/ ice albedo change

The average BC deposition
amount of 266 (ug/m?) for
Yala Glacier measured by
Gul et al. (2021)

It was provided as input in
the equation provided by
Yasunari et al. (2010) to
obtain the change in
albedo due to BC
concentration on firn and

ICe.

Firn

BCD amount | Firn density | BC deposition BCC Reduced

(ng/m?) (kg/m3) snow depth (m) | (ug/kg) (x) | albedo (%) (y)
266 450 0.02 29.56 8.0
266 780 0.02 17.05 5.3

Ice

BCD amount | Ice density BC deposition BCC Reduced

(ug m™?) (kg/m?) snow depth (m) | (ug/kg) (x) | albedo (%) (y)
266 915 0.02 14.53 4.7

Regression equation to calculate albedo change due to BC concentration (Yasunari et al., 2010)
Eq. y=2.20386E-01x+1.51181; where, x = BC concentration (ug kg™) on snowf/firn/ice; y = % of reduced albedo




Glacier loss in Langshisha
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Basin average ice condition with and without the impact of BC. Loss of ice was 0.29 m per year
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Basin average conditions with and without the impact of BC
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Streamflow (m?¥s)

Hydrological Response

Monthly averaged streamflow from 2012 to 2018.
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PDGL = Potentially Dangerous Glacial Lakes (ICIMOD and UNDP, 2020)

3 Potentially dangerous glacial lakes
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Avalanche Hazards in the Nepal Himalayas: The April 2024 Birendra

Lake Case Stud
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Birendra Lake in Gorkha district. A) Nepal with district boundaries with the location of Gorkha District, B)
Local municipalities of Gorkha District with the location of Birendra Lake in Chum Nubri Rural Municipality,
and C) Google Earth image of Birendra Lake.

Location: Birendra Lake, Gorkha
district, Nepal, underneath of Mt.
Manaslu

Avalanche Event Date: April 21, 2024
Impact:

Surge in Budhi Gandaki River (69 cm
rise at Ghap station within 20 min)

One of the huge events to the date
according to local people



Transformation of Birendra Lake: Before and After the Avalanche Event

Before Event - 9/04/2023 After Event - 25/04/2024

Photo Credit: Nepal Tourism Hub Photo Credit: Manavi Chaulagain




Mt. Manaslu Peak and glacier just above
Ice debris floating on the lake's surface three days after the avalanche event Birendra lake




Thame GLOF, 16 August 2024
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Evolution of Glacier ake 2 over different time
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24 hour Rainfall accumulation (mm}

Daily Rainfall and Maximum Temperature
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SEN upgraded 5 manual stations to AWS in August
z 2024, real time data have been officially connected in
g | ‘the DHM server (T, RH, P)
Ggmgadhi
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DHM utilizes the precipitation data from these AWS
z | for early warning purposes and sends early warnings
&1 to downstream communities through bulk SMS.
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Conclusion

Physically based models (e.g. CRHM)
are useful for simulating future scenarios

In recent years, South Asia and China
have experienced frequent and intense
droughts, floods, and landslides.

L8bane
....

There have also been instances where
inadequate meteorological information
for local communities has resulted in
unfortunate loss and damages.

Timely accurate forecast data are 1815
needed and more frequent monitorin cal
and observations are to be expanded. ST -
Enhancing Climate Resilience in South

Asia and China: Predicting Precipitation dhiraj@smallearth.org.np
Shifts and Their Impacts for Disaster

Risk Reduction and Resource Security
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