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Canada’s freshwater early warning system
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i 1-Athabasca Glacier Research Basin
| 2 - Bow River Headwaters (Bow Hut)
4 3 - Peyto Glacier Research Basin

| 4 - Helen Creek Research Basin

5 - Fortress Mountain Research Basin
6 - Burstall Creek

7 - Marmot Creek Research Basin

8 - Sibbald Wetlands

9 - Chappell Marsh Conservation Area
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| 10 - Kenaston/Brightwater Creek Mesonet Site

11 - Clavet Livestock and Forage Centre of Excellence
12 - St. Denis National Wildlife Area

13 - Duck Lake

14 - Buffalo Pound Lake

15 - Old Black Spruce Site - Boreal Ecosystem
Research and Monitoring Sites (BERMS)

16 - Old Jack Pine Site - BERMS

17 - Fen Site - BERMS

18 - Saskatchewan River Delta

19 - Hannin Creek
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Canadian Rockies Hydrological Observatory




Glacier Monitoring at Peyto Glacier




Glacier Flow Rate

Glacier flow measured by locating rocks on the surface of
the upper glacier in RGB photography from different
years.

Average flow:

2019-2022: 7.27m/year
2022-2023: 7.13m/year
2023-2024: 8.45m/year

| Flow 2023/24
Glacial Flow 2022/23
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Peyto Glacier
5-year Vertical Loss

Peyto vertical ice
loss 2019 - 2024
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Peyto Glacier 1 Year Vertical
Loss — ice and moraine
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Peyto Glacier Change Summary

* Flow rates accelerated from 7.2 to 8.5 m/year over 2019 -2024
e 443 m of retreat since 2019

* 4 - 6.5 m of ablation due to melt in 2023-2024 — surface lowering of
31 m around ice surface collapse over internal conduit

e Substantial moraine surface change in 2023-2024 - from 29 m
lowering to 16 m increase due to debris-covered ice melt and debris
flows

* 30-35 m of ablation due to melt 2019-2024 with surface lowering of
56 m around ice surface collapse



SWE (kg/m?) = snow density (kg/m3) x snow depth (m)
LIDAR provides snow depth, but snow density needed to calculate SWE
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Landscape Units from Stratified SWE Sampling

Landscape units (Steppuhn and
Dyck, 1974) derived from existing
landscape classifications (ABMI),
and adjusted using RGB imagery
and scientists' observations
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SWE Calculation Workflow

Inputs: lidar snow depth maps, manual snow density measurements
from 2023 snow year, snowpack temperature for season delineation
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for manual snow depth/density

Calculate SWE using equation
from Pomeroy & Gray (1995)
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Methods — SWE Calculation Workflow
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Results — SWE Point RMSE

Plotting manual point SWE against calculated
point SWE reveals:

* Regression methods fail in spring (expected!)

* Pomeroy and Gray (1995) equation surprisingly
suitable in spring

 Landscape-stratified mean density provided
the closest estimate of point SWE overall

12004 RMSE = 135.00

Average
Avg. Aggregated SWE (mm)

12001 RMSE = 129.27

Regressed
Reg. Aggregated SWE (mm)

Manual SWE irﬁm}

Manually measured SWE vs
drone-derived SWE
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Pomeroy & Gray (1995) SWE (mm)

Avg. Landscape Strat. SWE (mm)

12001 RMSE = 115.25

Reg. Landscape Strat, SWE (mm)

2004 RMSE = 150.79

2001 RMSE = 116.16
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Areal-weighted Basin SWE

2022-2023 Snow Year
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UAV-LIDAR snow survey summary

Applying 5 methods of density interpolation for basin-wide SWE calculation
revealed:

Point SWE was best estimated by using a landscape stratified mean density
(RMSE 114 mm, mean bias -51.9 mm)

* Landscape stratified methods outperformed aggregated approaches

* All methods failed to represent point SWE in the spring — P&G (1995) equation predicts spring point SWE best,
but bias was large

Conclusions:
i) landscape-stratified shnow density measurements improve SWE
estimates from UAV-LiDAR snow depths
ii) if density cannot be measured, Pomeroy and Gray (1995) equation can
be used to estimate SWE in mountain environments
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