

Research Basin Rofental

News from the Rofental: Data, Model, AlpSnow

University of Innsbruck Ulrich-Strasser, Michael Warscher, Erwin Rottler

University of Innsbruck, Department of Geography

Rofental

2.919 m Hintereisferne n Hintern Ei Hydrometric Stations Meteorological Stations Terrestrial Laser Scanne Rofental Basin Boundar

Location:

Tyrol, Austria; 46.83°N, 10.83°E **Area:** 98.1 km², 25% glacierized **Elevation:** Mean 2930 m a.s.l. (min. 1891 m to max. 3772 m a.s.l.)

- Website:
 - https://www.lter-austria.at/rofental
 - https://www.uibk.ac.at/projects/station-hintereis-opal-data/index.html.en
- Operational Management:
 - University of Innsbruck, Austria:
 - Department of Atmospheric and Cryospheric Sciences
 - Department of Geography
 - Bavarian Academy of Sciences, Germany
 - Hydrographic Service of Tyrol, Austria

Rofental: observational stations and sites

Туре	Station Name	Latitude	Longitude	Elevation	Notes/Details
Climate and Snow Station	Bella Vista	46.78284°N	10.79138°E	2805 m	Data since July 2015 or September 2017
Climate and Snow Station	Latschbloder	46.80106°N	10.80659°E	2919 m	Data since September 2013 or September 2017
Climate and Snow Station	Proviantdepot	46.82951°N	10.82407°E	2737 m	Data since October 2019
Terrestrial Laser Scanner	Im Hintern Eis	46.79586°N	10.78277°E	3244 m	Since 2016
Meteorological	Hintereisferner	46.79867°N	10.76042°E	3026 m	Since 2010
Hydrometric	Vent	46.85722°N	10.91083° E	1891 m	Since 1967 (98.1 km ²)
Hydrometric	Vernagtbach	46.85675°N	10.82886°E	2635 m	Since 1974 (11.44 km ²)
Meteorological	Im Hintern Eis			3244 m	

Rofental: field observatin campaigns and other measurements

Measurement	Instrument Description	Spatial/Temporal Resolution and Coverage	Notes/Details
UAV Sensors			Campaigns
Time-lapse Photographs			Im Hintern Eis, Bella Vista
Snow Pits/Snow Surveys			Campaigns
Glacier Surface Elevation			Hintereis
Glacier Mass Balance			Vernagtferner, Hintereisferner, Kesselwandferner at WGMS

Earth Syst. Sci. Data, 10, 151–171, 2018 https://doi.org/10.5194/essd-10-151-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

The Rofental: a high Alpine research basin (1890–3770 m a.s.l.) in the Ötztal Alps (Austria) with over 150 years of hydrometeorological and glaciological observations

Ulrich Strasser¹, Thomas Marke¹, Ludwig Braun³, Heidi Escher-Vetter³, Irmgard Juen², Michael Kuhn², Fabien Maussion², Christoph Mayer³, Lindsey Nicholson², Klaus Niedertscheider⁴, Rudolf Sailer¹, Johann Stötter¹, Markus Weber⁵, and Georg Kaser²

¹Department of Geography, University of Innsbruck, Innsbruck, 6020, Austria
²Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, 6020, Austria
³Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Munich, 80539, Germany
⁴Hydrographic Service of Tyrol, Innsbruck, 6020, Austria
⁵Photogrammetry and Remote Sensing, Technical University of Munich, Munich, 80333, Germany

Correspondence: Ulrich Strasser (ulrich.strasser@uibk.ac.at)

Received: 3 August 2017 – Discussion started: 21 August 2017 Revised: 26 November 2017 – Accepted: 18 December 2017 – Published: 24 January 2018

Snow monitoring Rofental

Meteorological data:

Temperature, humidity, wind speed and direction, air pressure, precipitation, radiative fluxes (short- and longwave, up and down) etc.

Snow data:

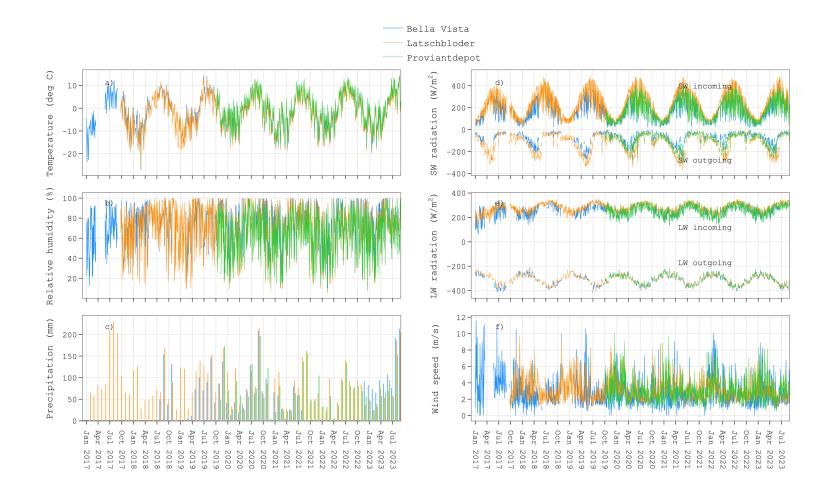
universität innsbruck

• Bella Vista (2805 m a.s.l.)

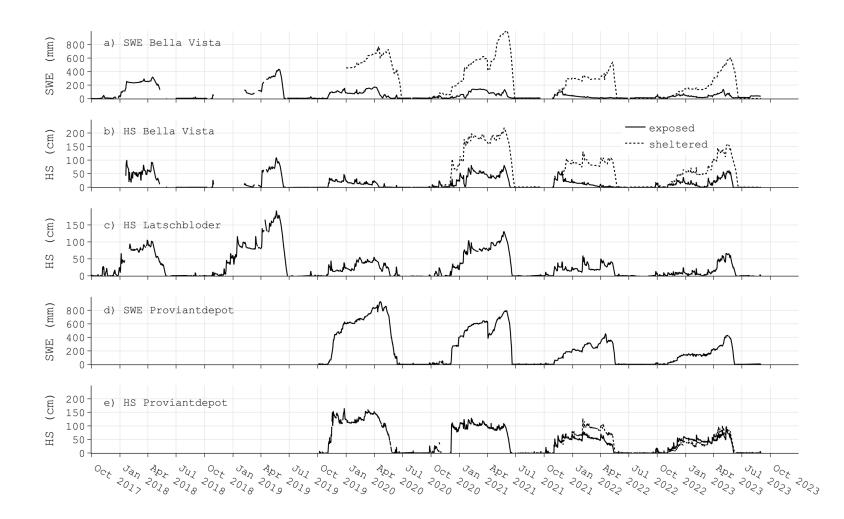
Pair of snow pillow/scale with ultrasonic snow depth, snow temperature profile, acoustic snow drift

• Latschbloder (2919 m a.s.l.)

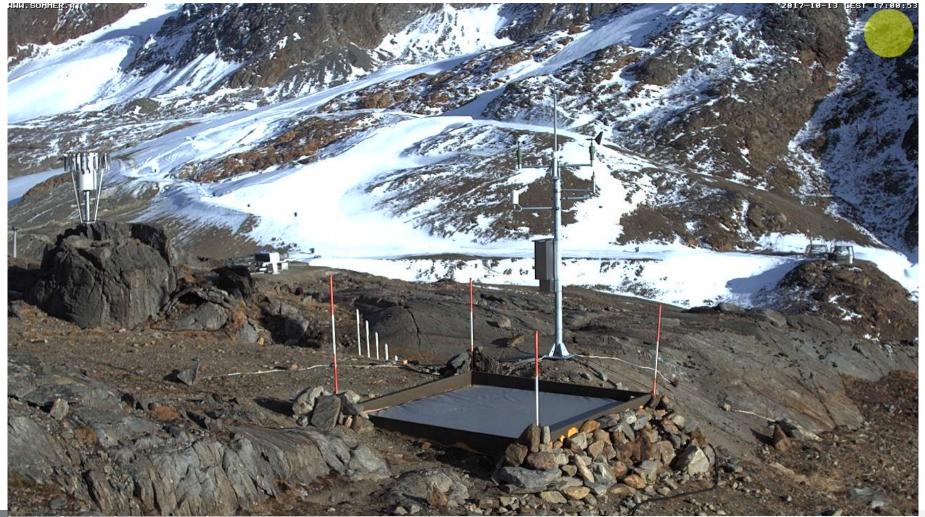
Ultrasonic snow depth, snow temperature profile


• Proviantdepot (2737 m a.s.l.)

Surface temperature, snow depth, snow water equivalent, layered density and liquid water content (snow pack analyzer), snow temperature profile

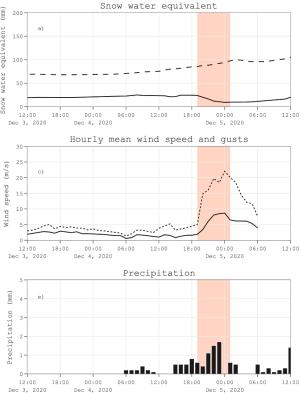


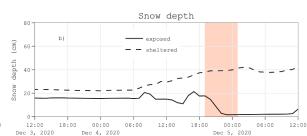
All stations: meteorological data

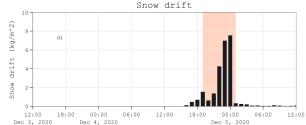


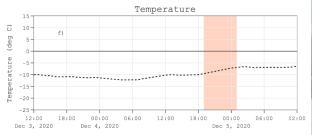
All stations: SD and SWE

Bella Vista: acoustic sensor, paired SD/SWE measurements

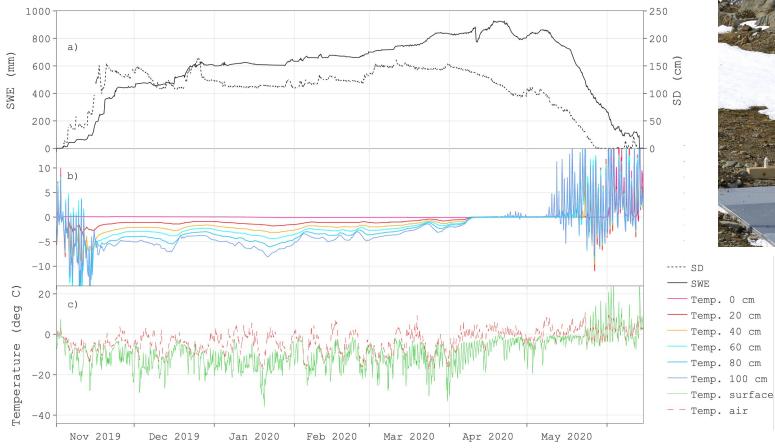

University of Innsbruck, Department of Geography



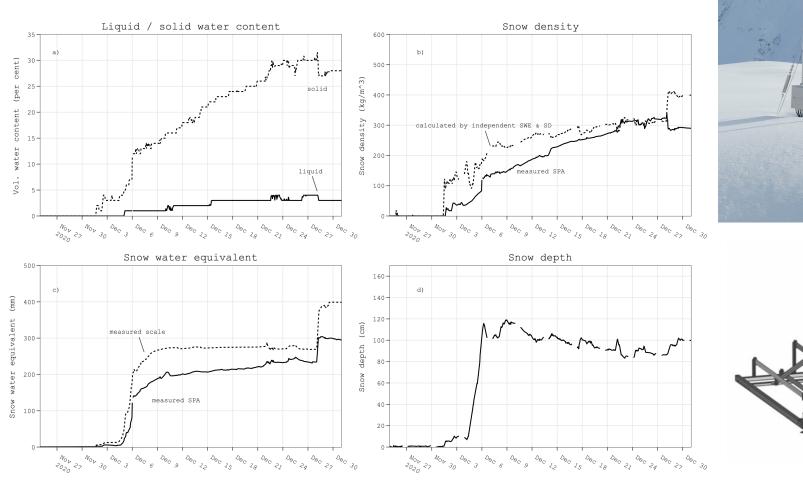

Bella Vista: acoustic sensor, paired SD/SWE measurements



Bella Vista: acoustic sensor, paired SD/SWE measurements



Bella Vista: snow data



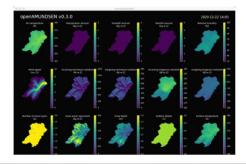
University of Innsbruck, Department of Geography

Proviantdepot: SPA data

universität innsbruck

openAMUNDSEN: model code and availability

Publications

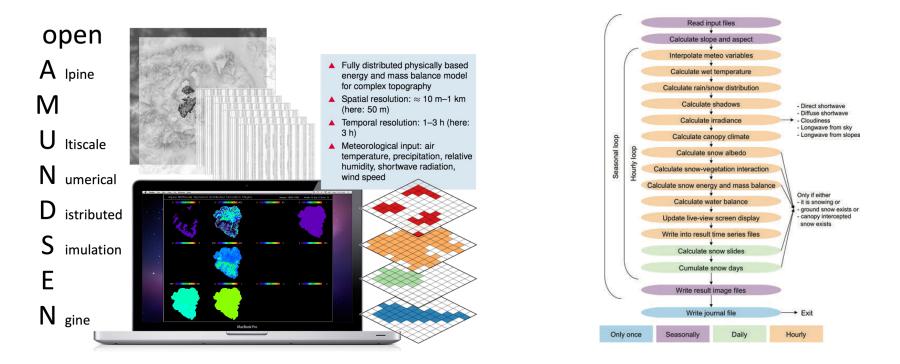

About

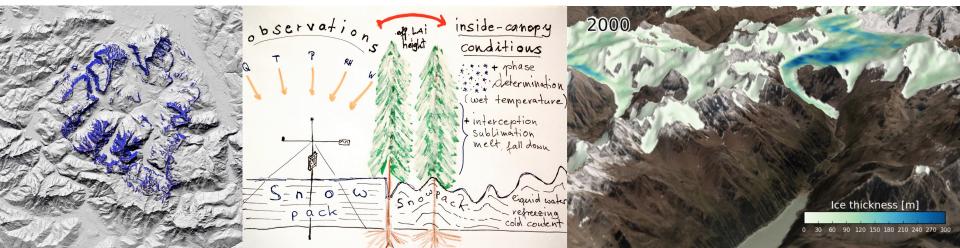
Python 100.

openamundsen / openamun	dsen (Public)	Q Notifications ♀ Fork	(1) 🛱 Star 2 👻
Code 💿 Issues 29 🕄 P	ull requests 💿 Actions 🗄 Projects 🖽 Wiki 💮 Security 🗠 Insi	ights	openAMUN
' main - P 1 branch 🛇 12 tag	Go to file	ode - About	
fhanzer Update test data hashes	Modular snow modeling fran	openAMUNDSEN	
.github/workflows	Temporary fix for CI on Windows (#71) 4 months	s ago ats MIT Licens	News
doc	Initialize Sphinx docs 14 months		
openamundsen	Update cryo layer density in CryoLayerSnowModel.update_properti 6 days	s ago 💿 3 watching	Description
tests	Update test data hashes 6 days	s ago 🦞 1 fork	Documentation
.gitignore	Remove (snowfall rainfall precip)_rate variables (#59) 9 months	s ago	Installation
LICENSE	Add license 12 months	Releases 6	Input data Configuration Running the model
MANIFEST.in	Initial commit 2 years	s ago S v0.6.0 Lat	
README.md	Update Readme 3 months		
pyproject.toml	Use setuptools_scm for handling the package version 10 months	s ago	
setup.cfg	Use console_scripts entry point for the openamundsen command li 9 months	s ago Packages	Output data
setup.pv	Move build setup to setup.cfg 10 months	s ago No packages pub	Example data set

openAMUNDSEN

openAMUNDSEN is a modular snow and hydroclimatological modeling framework written in Python.


https://github.com/openamundsen/


N	Q Search openAMUNDSEN
	Documentation / Installation
	Installation
~	openAMUNDSEN is a Python (3.7+) package and compatible with all major platforms (Linux, macOS, Windows) and architectures.
~	To help keep its dependencies separated from other Python packages installed on your system, we recommend to install it either from within a conda environment (if you are using the conda package manager) or a standard Python virtual environment.
	Using conda
	When using conda, the recommended steps to install openAMUNDSEN are:
	Install Miniconda (recommended) or Anaconda by downloading and executing the installer for your operating system and architecture.
	2 From the terminal, create a conda environment for openAMUNDSEN by running
	conda createname openamundsen
	3 Activate the environment by running
	conda activate openamundsen
	4 Install openAMUNDSEN by running
	conda installchannel=conda-forge openamundsen
	Using virtualenv
	If you want to install openAMUNDSEN in a virtual environment instead:
	1 Create a virtualenv in the current working directory by running
	python3 -m venv openamundsen

https://doc.openamundsen.org/

universität innsbruck

openAMUNDSEN: model design

openAMUNDSEN: an open_source snow-hydrological model for mountain regions

Strasser Ulrich¹, Warscher Michael¹, Rottler Erwin¹ and Hanzer Florian^{1,2}

¹ Department of Geography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria ² lumiosys GmbH, Innrain 52, 6020 Innsbruck, Austria

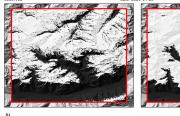
Correspondence: Ulrich Strasser (ulrich.strasser@uibk.ac.at)

In preparation for GMD ...

act. openAMUNDSEN (= the open source version of the Alpine MUltiscale Numerical Distributed vion ENgine) is a fully distributed model, designed primarily for <u>calculating the seasonal evolution of a</u> ver and melt rates by resolving the mass and energy balance of snow and ice covered surfaces in mountain s potential applications are very versatile; typically, it is applied in areas ranging from the point scale to scale (i.e., up to some hundreds to thousands of square kilometers), using a spatial resolution of 10a temporal resolution of 1-3 h or daily. Temporal horizons may vary between single events to-and s scenarios. The main features of the model include:

. interpolation of scattered meteorological point measurements using a combined lapse rate – inverse stance weighting scheme

- Calculation of solar radiation taking into account terrain slope and orientation, hillshading and atmospheric transmission losses as well as gains due to scattering, absorption, and reflections
- Adjustment of precipitation using several correction functions for wind-induced undercatch and lateral redistribution of snow using terrain-based parameterizations
- Simulation of the snow and ice mass and energy balance using either a multilayer scheme or a bulk- scheme using four separate layers for new snow, old snow, firn and ice
- Alternatively, a temperature index/enhanced temperature index method can be applied, the latter considering potential solar radiation and albedo of the surface
- Usage of arbitrary timesteps (e.g. 10 minutes, daily) while resampling forcing data to the desired temporal resolution if necessary
- Flexible output of time series including arbitrary model variables for selected point locations in NetCDF or CSV format
- Flexible output of gridded model variables, either for specific dates or periodically (e.g., daily or monthly), optionally aggregated to averages or totals in NetCDF, GeoTIFF or ASCII Grid format
- Built-in generation of future meteorological data time series as model forcing with a given trend using a bootstrapping algorithm for the available historical time series of the meteorological recordings
- Live view window for displaying selectable variables of the model state during runtime.



ESA Alpine Regional Initiative AlpSnow EXPRO+

- High-resolution hydrological simulations using the snow and hydroclimatological modelling framework openAMUNDSEN
- Performance assessment using in-situ data from automatic snow and runoff stations
- Use of AlpSnow products for validation of snow process modelling
- Assimilation of AlpSnow products into modelled snow cover and streamflow simulation

AlpSnow Rofental/Val Senales

AlpSnow example satellite data products

AlpSnow product	Spatial res. / extent	Temporal res. / period	Related model variables in openAMUNDSEN
S3 FSC snow coverage (FSC-S3-LAMSU)	0.002° / ~ 200 m, Rofental	daily Jan 2017 - Jul 2023	FSC, SD, SWE
S2 FSC snow coverage (FSC-S2-LAMSU)	0.0002° / ~ 20 m, Rofental	5/10 days Oct 2016 - Jun 2023	FSC, SD, SWE
S2 FSC snow coverage (FSC-S2-ML)	0.0002° / ~ 20 m, Rofental	5/10 days Oct 2016 - Jun 2023	FSC, SD, SWE
S1 Wet Snow (WSM-S1)	0.001° / ~100 m, Rofental	6/12 days Mar 2018 - Aug 2021	liquid water content, snow surface temperature, snowmelt

Fractional snow cover maps for June 18, 2019

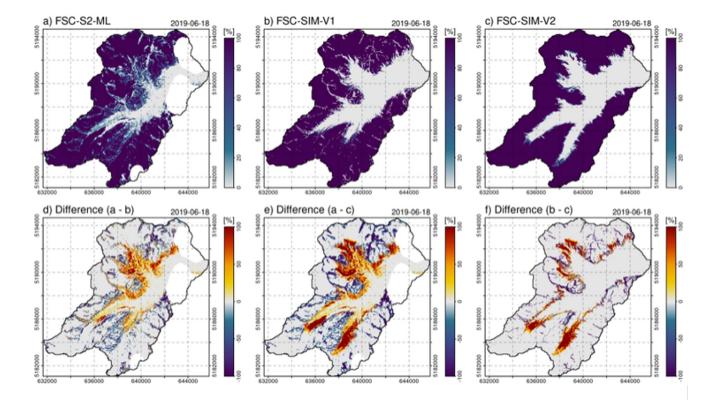


Figure 3.4: Fractional snow cover (FSC) maps based on a) S2 data processed using ML, b) openAMUNDSEN model simulations including lateral snow redistribution (V1) and c) openAMUNDSEN simulations without lateral snow redistribution processes (V2) for June 18, 2019. Panels d), e) and f) reflect the difference between the maps for the selected day.

Wet snow maps for May 31, 2018

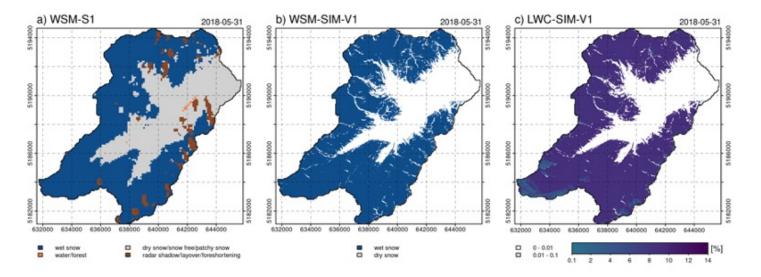


Figure 3.6: Comparison of wet snow maps (WSMs) for May 31, 2018 derived from remote sensing data (a)) and distributed physically-based model simulations using openAMUNDSEN in configuration version 1 (b)). The simulated WSM (b)) is derived from simulated liquid water content (LWC; c)), where areas with a LWC larger than 0.1 % are considered wet snow.

Simulated wet snow areas 2018 to 2021

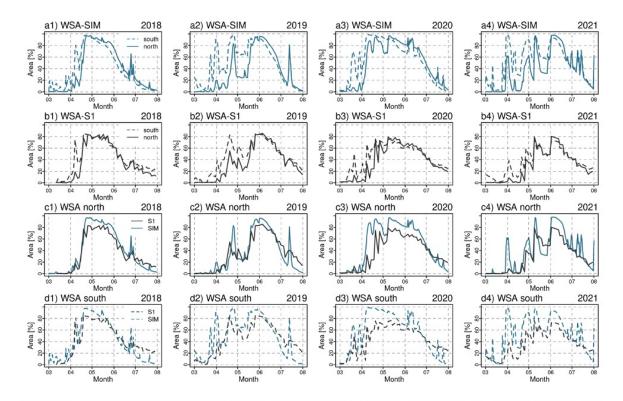


Figure 3.8: Simulated wet snow areas (WSA-SIM) for the years 2018–2021 (March–July) for south- and north-facing slopes (a1)–a4)), wet snow areas derived from S1 data (WSA-S1) for south- and north-facing slopes (b1)–b4)), comparison of simulated and satellite data based wet snow areas for north-facing slopes (c1)–c4)) and comparison of simulated and satellite data derived wet snow elevations for north-facing slopes (d1)–d4)). Values are given as the fraction of total area of north and south-facing slopes, respectively.

Thank you!

漾

Gel/ex

LAND TIROL University of Innsbruck, Department of Geography

AlpSnow

TSER

vroleanalps