Hydrological Prediction in High Mountains - Andes

The PWPi-Andes team INARCH Meeting October 10, 2023

Motivation: the need to provide answers to specific questions Extreme event impacts

Runoff contribution (mm yr⁻¹)

ſ

200

100

b)

1960

1970

1980

Summer contributions

1990

2000

2010

Seasonal streamflow forecasting (Araya et al., 2023)

> Glacier influence on streamflow (Ayala et al., 2020)

20

10

Feb

Apr

Jun

Aug

Oct

Dec

Sub-projects focusing on different "flavors" of the overarching theme

SP-1. Regional snow simulation (Maria Courard).

Research question: What is the appropriate level of complexity in regional-scale snow water equivalent simulations in the Andes Cordillera?

SP-2. Drought propagation and process understanding in high mountain watersheds (Diego Hernández).

Research question: How do high mountain catchments respond to droughts of different characteristics?

SP-3. Glaciohydrology and global change in the extratropical Andes Cordillera (Alonso Mejías).

Research question: What are the expected hydrological impacts of projected glacier retreat in the extratropical Andes at the watershed scale?

CWARHM Approach (Knoben et al. 2022)

- Workflow preparation: domain discretization in 1) TIN; 2) Grid; 3) HRU
- 2. Model-agnostic preprocessing
 - a. NWP and reanalysis met forcings (ECMWF, ERA5-Land)
 - b. Scaled station-based local gridded met. reference product (Álvarez-Garretón et al., 2018; Boisier, 2023) -> daily precipitation, max/min air temperature
 - c. Downscaling of a. based on b.
- 3. Remapping of preprocessed forcings to model elements
- 4. Model-specific preprocessing
- 5. Visualization and analysis

SP-1. Regional Snow Modeling with CHM

Area (km²)	Annual pp (mm)	Mean annual temp (°C)	Number of triangles	Area range (m²)	Mean area (m²)	Mean resolution (m)	Cores/Run time (1 WY)
~ 3 200	600	4	~ 100 000	400 - 700 000	32 000	180	22/ ~1hr30

SP-1. Regional-scale SWE Results with CHM

2016/03/31 22:00

CHM1: NO PBSM - NO SS

CHM3: NO PBSM - SS

CHM2: PBSM - NO SS

CHM4: PBSM - SS

CHM4

CHM1

CHM2

SP-1. Point-scale SWE Results

- Comparison with manual snow surveys during accumulation season, peak SWE and end of snow season.
- SWE underestimation during the accumulation season.
- Correct representation of peak SWE.

SP-1. Snow Covered Area

0.12

0.12

0.11

0.80

0.81

0.80

0.15

0.15

0.15

CHM2

CHM3

CHM4

Snow cover error on 01/11/16, comparing CHM4 output to MODIS+Landsat

General overestimation of snow covered area, except during june-july.

Performance metrics over the whole area show no differences between models.

Setup: 5 x 5 km grid cells, GRUs defined by land cover and aspect, MMESH enabled.

Dominant land cover classes:

-70.5

-70

SP-2. Drought impacts with MESH

From total precipitation to solid precipitation and then snow accumulation, the deficit amplifies for the megadrought but softens for La Niña years (in %).

This modulation is possibly related to the seasonal temperature anomalies (LN and MD capture well-defined meteorological signatures).

Average anomalies					
Variable	La Niña	Megadrought			
Precipitation (%)	-19.3	-26			
Storms temperature (°C)	-0.3	0.2			
Temperature JJA (°C)	-0.3	0.2			
Temperature OND (°C)	0.2	0			
Temperature JFM (°C)	-0.3	0.5			

SP-2. Drought impacts with MESH

С

b

а

Glacier GRU variables:

Megadrought	Long-term average	Annual contribution: Q _{glacier} to Q (%)		Summer contribution: Q _{glacier} to Q (%)	
R	Aconcagu a	3.6		7.8	
M	Mapocho	2.8		5.9	
	Maipo	6		16	
my 3	Cachapoal	7.8		23.2	
3 5	Tinguiririca	5.8		20.3	
Overall: -3.3 %	Average anomaly	Annual Q _{glacier} , compared to long-term average (%)		Summer Q _{glacier} , compared to long-term average (%)	
0-30 0 30 60		LN	MD	LN	MD
_{al} /P _{annual} : 78.7 %	Aconcagu a	-39	-80	-66	-84
ouia de	Mapocho	-36	-77	-64	-83
ng-term	Maipo	-22	-49	-37	-53
oducing	Cachapoal	-22	-34	-46	-43
	Tinguiririca	-22	-32	-50	-45

These three variables are already scaled by annual precipitation and could be interpreted as efficiencies.

The MD depicts less efficiency in producing snowmelt (compared to the long-term average) and producing runoff (compared to LN), and more efficiency in producing evaporation.

SP-3. Glaciohydrological impacts with CRHM

-70.8 -70.9 -70.5 -70.2

SP-3. Tinguiririca basin evaluation

Variable	RMSE	R2	KGE	r pearson	α	β
SWE (m.w.eq)	0.10	0.90	0.85	0.96	0.91	1.11
FSCA (%)	9.86	0.85	0.89	0.95	1.06	1.08

SP-3. Olivares basin evaluation (parameters from Tinguiririca)

Variable	RMSE	R2	KGE	r pearson	α	β
SWE (m.w.eq)	0.08	0.80	0.85	0.96	1.15	1.23
FSCA (%)	19	0.70	0.70	0.87	1.25	1.09

Summary and perspectives

- Snow regional modelling CHM: proposal for full Andes implementation submitted Oct 5th 2023
- MESH implementation: model calibration to follow
- CRHM implementation: Better constrain MB+EB -> climate change scenarios
- Experimental catchments:
 - Maintenance and repairs planned for summer 2024 at Las Bayas (8) and Valle Hermoso (7)
 - Expansion of Las Bayas

