

Quantifying contributions of runoff components to streamflow in Central Asian glacierized basins

Zhihua He, Sergiy Vorogushyn, Katy Unger-Shayesteh, Abror Gafurov, Olga Kalashnikova, Bruno Merz

Global Institute for Water Security

October 9, 2023 INARCH Workshop

> HELMHOLTZ CENTRE POTSDAM GFZ GERMAN RESEARCH CENTRE FOR GEOSCIENCES

Volkswagen**Stiftung**

2023/10/16

- Background & Study basins
- Methods for quantifying contributions of runoff components & Results

Central Asian High Mountains

GFZ

What do glaciers look like in Central Asia

Moulin

Crevasse

Runoff components contributing to streamflow

Definition 1 based on water source: Ice melt%+Snowmelt%+Rain%=100%

Definition 2 based on flow pathway:

Ice melt%+Snowmelt%+Rain%+groundwater%=100%

groundwater (red), ice melt (blue), snow melt (orange), rainfall-runoff (green) Lutz et al. 2014

Weiler et al. 2018

Study basins

Glacier measurement & water sampling

- Background & Study basins
- Three methods for quantifying contributions of runoff components & Results

End-member mixing approach (EMMA)

GFZ

Helmholtz-Zentrum

End-member mixing approach

GFZ Helmholtz-Zentrum PotsDAM

EMMA: Traditional end-member mixing approach Bayesian_O: Bayesian method using Oxygen and EC Bayesian_OH: Bayesian method using Oxygen, Hydrogen and EC

Uncertainty range:

EMMA>Bayesian_O>Bayesian_OH

Stepwise calibrated hydrological modeling

Hydrological modeling

Processes coded in WASA:

- Snow melt
- Glacier melt and glacier dynamics
- Infiltration
- Soil water movement
- Evapotranspiration
- Runoff generation
- Runoff routing in river network
- Retention in reservoirs

AGU PUBLICATIONS

Water Resources Research

RESEARCH ARTICLE 10.1002/2017WR021966

The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in Glacierized Basins

Key Points: • The HPC-based method (1) delivers model-internal consistency Zhihua He¹, Sergiy Vorogushyn¹, Katy Unger-Shayesteh¹, Abror Gafurov¹, Olga Kalashnikova³, Elvira Omorova⁴, and Bruno Merz^{1,2}

He et al. (2018)

Stepwise calibrated hydrological modeling

GFZ

Helmholtz-Zentrum

Isotope-aided hydrological modeling

GFZ Helmholtz-Zentrum POTSDAM

Isotope-aided hydrological modeling

How do the three methods compare

- In a Central Asian glacierized basin with a size of 230 km², glacier coverage is 17%, and annual mean precipitation is 550 mm (1970-2016): Annual contribution: Ice 18%, Snow 22%, Rain 15%, Groundwater 45%
 Melting season: Ice 24%, Snow 25%, Rain 10%, Groundwater 41%
- Hydrological modeling and EMMA tended to estimate the **mean contributions closely**, with the difference smaller than 5%.
- EMMA estimated contributions showed much larger uncertainty than hydrological modeling. Water isotopes significantly helped reduce uncertainty in the modeled contributions

Global Institute for Water Security

Thank you for your attention!

Contacts:

Zhihua He @ZhihuaHe_Hydro

Researcher at USask, interested in climate and landuse changes, hydrological modeling uncertainty, cold region hydrology and flooding

210 Following 105 Followers