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Motivating Issues and Questions

• Hydrologic models and process studies require forcings

• Climate models run at convection-permitting resolutions can produce 
reasonable-looking precipitation at O(km)

• Commonly used models aren’t so much models as much as 
modeling frameworks requiring choices

• Evaluating model outputs is challenging: benchmark datasets are 
often not entirely independent

• How can we evaluate precipitation from convection-permitting 
climate models from a hydrologic context?
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The Modeler’s Dilemma

When choosing model 

options, we often ask:

• Which option is most 

physically realistic? 

• Which options produces 

better results?

• The answer is often not 

the same!
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Microphysics Control Precipitation
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Full WRF Configurations
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WRF Numerical Experiments

• Nested 3 and 1 km grids centered on central CO Rockies

• WY2018 and WY2019 runs (Oct.-May) forced by CFSv2:
• Thompson et al. (2008) [MP08]

• Morrison et al. (2005) [MP10]

• Jensen et al. (2017) [MP55]

• Offline model runs with Noah-MP 

• East and Taylor River Watersheds
• DOE SC Watershed Function Scientific Focus Area

• DOE ARM Surface Atmosphere Integrated field Laboratory (SAIL)

• Airborne Snow Observatory snow depth and SWE retrievals
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Full WRF Domain
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Somewhat of an 

Apples::Oranges 

Comparison

Schemes differ in:

• # of hydrometeor classes

• Shape and orientation
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Airborne Snow Observatory Data
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Thanks to Jeff Deems, the ASO team, and the Watershed Function SFA!



Comparisons at Peak SWE
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Coordinated Field Campaigns

• Does the snowpack record 
microphysics?

• Does the microphysics set the 
stage for runoff and 
streamflow?
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Figures created with PyART, Helmus, J.J. & Collis (2016)

ARM, 2021a
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Summary

•  Cloud microphysics schemes control: 

• Evolution of the hydrometeor,

• Interactions of the hydrometeor and topography, and 

• Ultimately precipitation 

• This sets conditions for snowpack development and water 

delivery to the critical zone

• Coordinated atmosphere-to-bedrock field campaigns in 

mountain watersheds are essential!
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Thank you!
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