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Long Term Research Catchments
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Long-term catchment research
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o Provides a backbone of continuous water balance data to
support focused campaign research

o Enhanced understanding that is undiscoverable in short-term
funding cycles

o Will lead to Improved hydrologic prediction

o Helps answer questions we haven’t yet thought to ask
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Never decommission a datalogger!!

WATER RESOURCES RESEARCH

In Defense of Experimental Watersheds

JOHN D. HEWLETT
School of Forest Resources, University of Georgia, Athens 30601

HOWARD W, LULL AND KENNETH G. REINHART

Northeastern Forest Experiment Station, United States Forest Service
Upper Darby, Pennsylvania 19088

Abstract. Recent criticisms discount the contribution of experimental watersheds to the
science of hydrology and to watershed management. The critics cite as disadvantages the
cost of experimental watersheds, their unrepresentativeness, leakiness, difficulty in applying
results to other areas, and the lack of progress in basic knowledge about hydrologic processes,
Some critics propose mathematical synthesis, statistical analysis, plot studies, soil moisture
studies, meteorological methods, and the study of individual hydrologic processes as alterna-
tives to experimental watersheds. The criticisms Jack weight, because published results of
catchment experiments were not carefully reviewed. The alternatives are obviously aids
rather than substitutes for experiments on watersheds. By reference to recent and older
results, the authors argue that the experimental watershed method has produced much of
our present knowledge about the land phase of the hydrologic cycle and man’s influence on it,
that the method is sound, and that its future in any comprehensive research program is secure,
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Abstract Observations and data from long-term experimental watersheds are the foundation of
hydrology as a geoscience. They aliow us to benchmark process understanding, observe trends and natural
cycles, and are prerequisites for testing predictive models. Long-term experimental watersheds also are
places where new measurement technologies are developed, These studies offer a crucial evidence base for
und wding and ging the provision of clean water supplies, predicting and mitigating the effects of
floods, and protecting ecosystem services provided by rivers and wetlands. They also show how to manage
land and water in an integrated, sustainable way that reduces environmental and economic costs.

1. Establishing and Evolving Long-Term Watershed Research

The foundations of scientific hydrology and evidence base for inable water mar are the
observational data collected from long-term experimental watersheds distributed around the world [Hewlett
et al,, 1969]. Many were established in response to the First International Hydrological Decade (1965-1974),
which called for hasic nrnarame of data acnuicitinon and research aimed at exnandina auantitative nrocees-




Dry Creek Experimental Watershed

Dry Creek Data drainage Area: 27 km?

Real-time conditions and historical data for meteorological, stream-flow, . :
| T i / . 23
and soil measurement stations at DCEW can be accessed via the links to Bogus Ridge ears.

the left and below the map.
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OBIJECTIVE: To provide temporally continuous and spatially
distributed hydrometeorological and geographical data from point
to catchment scales for researchers and educators.



Dry Creek Experimental Watershed

CHAMPIONS
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Hydrologic Education

45 Dry Creek Theses

Other Universities
MS Mathematics

1

PhD Geophysics

PhD Geoscience

MS Geophysics z TR Lo

MS Geology

MS Civil Eng

> 25 working hydrologists in Idaho



Value in Place

e ...PLACE refers to a felt value regarding the relationships between
people and spatial setting (vidon, 2015)

e ...when we endow an undifferentiated space with value, space
becomes place (Hidalgo and Hernadez 2001)



Outline

e Catchment Characterization
* Inputs and Outputs
e Catchment biophysical properties

* Processes inside the box
* Soil Water-Vegetation relationships across the RSTZ
* Evaptranspiration across the RSTZ

* Predictive modeling
* How will changing precipitation phase impact hydrologic partitioning?



The Catchment:
Elevation Imposes Precipitation and Temperature Gradients

i ¥
_ _T
5 e
E ¢ Ploce
€ 0 E 3
< = 4%
c &8 500 - c &

c 2 ©

v o -8 o &
= 2 =
= =

300 ; 6

llmo 1}500 Z,mo

Elevation (m)



Straddles the Rain Snow Transition Zone (RSTZ)

Precipitation (mm)
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Snow Fraction is Declining by ~1% per year

Fraction of Annual Precipitation as Snow
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Annual Precipitation as Streamflow

Snowy Years Produce More Streamflow
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Precipitation Seasonality Imposes Distinct
Draining and Drying Hydrology
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Spring is taking water from summer

Average Change in
Proportion of Annual Flow Proportion of Annual Flow

Theil Sen estimator

( % per Decade )

Change in Contribution to Annual Flow

Chris Graham



How will changes in annual snow fraction across the rain-snow
transition zone impact catchment partitioning between
evapotranspiration and streamflow?

Changing S/P | Storage  Streamflow
— Transmission

Partition

Eva potranspiration>

What are the relevant internal processes that accomplish the
transition for precipitation to streamflow?



Spatially variable vegetation-soil water relationships will

regulate hydrologic response to precipitation phase transition
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The orientation of terrain imposes spatial

Aspect
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Topographically Moderated Soi
Seasons Impact Vegetation Dynamics...

Soil Moisture and Temperature
Sensor Array Layout

e 10 year Soil Moisture record

* Soil physical properties

* Landsat Normalized
Difference Vegetation Index
(NDVI)
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North Aspects...

...get less sunshine
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Aspect imposes highly heterogeneous snow
accumulation and melt




Aspect imposes Spatially and
Temporally variable infiltration
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North aspects are more productive

¢ MIHN * MHS
0.7 -

0.6 -
0.5 - .
04 -
0.3 -
0.2 -
0.1 -
0.0 |

Mar Apr May Jun Jul Aug Sep Oct Nov

NDVI
9

B North aspects
Bl South aspects

Smith et al., 2011



North Aspects have thicker and fine soils
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North Aspects...

...store more water
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Volumetric Moisture Content

Characteristic Soil Water Year
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North Facing Slopes Growing seasons
are later, but similar duration
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North Facing Slopes Use Water Faster
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Evapotranspiration across the Rain-Snow
Transition — Penman Monteith
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ET = Meteorological conditions
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Modified by soil water availability
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ET, Snow Fraction,

Below Rain-Snow Transition Zone
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Mid Elevation ET Optimum

Fraction Precipitation as Snow
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Soil Water — Plant Interactions

* Thicker, finer soils on high, north aspects
enable higher productivity by storing water
until periods when energy is available,
which supports faster soil water use and
growth rates

« Evapotranspiration is maximum in the
RSTZ where energy and water are
optimally aligned
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EcH20-1SO Model

“...a dynamic, spatially explicit model that couples a
vertical energy balance scheme (surface and canopy
layer) to a hydrologic model and a forest growth
component to capture the dynamic interactions
between energy, vegetation, and hydrology at hourly to

daily time scales.”
-Maneta and Silverman, 2013
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Modeling Scenarios

« SSP2-4.5 scenario in the IPCC report

« +2 C for 8 months (Oct-June)
* Rain zone increases by 28%, Snow zone decreases by 10%
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How will changes in annual snow fraction across the rain-snow
transition zone impact catchment partitioning between

evapotranspiration and streamflow?

28% increase in
rain zone area

D

EcH20 Model

Soil water —
Plant
Interactions

ISEEERHEH) 14

Evapotranspiration> +8%




Parting Comments

* Plant-moisture interactions vary across the rain-snow transition

* Plant-moisture interactions regulate how precipitation is partitioned
to ET and Streamflow

* Precipitation phase is changing from snow to rain

* Changes in hydrologic partitioning in response to precipitation phase
change is complex



Coevolution of
function and form

Insolation

’ ﬂ Pedo-

Insolation spread over larger Ecohydrologic

Feedbacks geomorphic

on N-facing slopes response Z P
B L. Mt e ‘ ' response
Short TN Long

Timescale of response

Conceptual model of landscape
response to aspect-induced
climate on north-facing slopes:
@ Initial response:
=> P moisture
= Pvegetation = L erosion
= P soil development

@ Positive Feedbacks:

P soil development =» 1) water storage
= | runoff = | drainage competition
= “ridgeline migration

=> J length & P gradient 2

® Negative Feedbacks:

M gradient + P soil thickness + {4, length

=» 1 erosion +/ drainage competition
=>» | ridgeline migration

Conceptual summary:
1. Initial moisture and
vegetation asymmetry
induces differences in
drainage incision and
expansion, ridgeline
migration and landscape
transience.

2. Erosion differences are
counteracted by gradient
changes, promoting
ridgeline and drainage
stability and equal
denudation rates

(i.e. a local steady state)

@ Positive & negative feedbacks
= dynamic equilibrium




North Aspects...

...are steeper and shorter
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Dry Creek Experimental Watershed

MISSION: Improve UNDERSTANDING and PREDICTION of interactions
between Water, Rock, Plants, and Animals in the Past, Present and

Future.

OBJECTIVE: To provide temporally continuous and spatially distributed
hydrometeorological and geographical data from point to catchment
scales for researchers and educators.

So that scientists can Think Inside the Box




North Aspects...

...have higher water holding capacity
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Vegetation impacts streamflow
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Simulated changes in each zone
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Annual ET Declines with Elevation
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Evapotranspiration Summer

* ET is controlled by the alignment of water availability and energy
demand

* ET is water limited in low elevations, BUT wet years produce
less ET due to cloudy conditions

* ET is energy limited at higher elevations, BUT more snow
shortens growing season due to longer snow persistence in
spring

* The rain-snow transition zone is in the energY-water optimum
where more precipitation AND more energy lead to increased ET



ET Dominates Exports

Annual Water Balance
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Volumetric Moisture Content
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