Parameter uncertainty of Hydro-glaciological model estimates derived from non-stationary climate conditions.

James McPhee, **Alonso Mejias**, Alfonso Fernández , David Farías , Hazem Mahmoud and Marcelo A Somos-Valenzuela , (1)University of Chile, Santiago, Chile, (2)Universidad de Concepción, Geography, Concepción, Chile, (3)University of Erlangen-Nuremberg, Erlangen, Germany, (4)University of Texas at San Antonio, Department of Earth and Planetary Sciences, San Antonio, TX, United States, (5)University of La Frontera, Butamallin Research Center for Global Change, Temuco, Chile

Abstract Text:

Geodetic mass balance (GMB) estimates offer the opportunity to mitigate the data scarcity that affects calibration and evaluation of hydro-glaciological models in mountain areas. New analytic techniques allow to obtain GMB from historical aerial photographs, extending the record to pre-satellite decades. This study analyzes how the calibration and performance of a physically based hydro-glaciological model varies when using a set of GMB spanning different hydro-climatic periods. For this purpose, we modeled the changes in volume and runoff from the Universidad Glacier, the largest mountain glacier in the extratropical Andes north of Patagonia (27 km ; -34.7°N; -70.34°E) between the years 1955-2021. An energy balance model was implemented using the CRHM platform, considering different processes relevant to high mountain hydrology such as gravitational redistribution and blowing snow. Our modeling approach includes off-line routines for ice thickness redistribution and interannual changes in ice albedo, implemented into the CRHM model. To calibrate the model, 8 GMB periods between 1955-2019 were available. Different cases were considered by varying the availability of DEM's, generating different periods of mass balance. We observed that models calibrated only with GMB between 1997-2019, a period characterized by high temperatures, estimated a 24% decrease in volume between the years 1955-2019. In contrast, models calibrated with GMB from 1985 or earlier, a period with higher accumulation, simulated a 13% glacier volume loss, closer to the 17% observed loss. The runoff simulated by the models calibrated with GMB in the period 1997-2019 is 13% higher than the models calibrated with GMB that covers earlier periods. In addition, the best-fit models show an increase in runoff of 11% in the period 2000-2020 compared to the years 1980-2020